Partial vs General

- Exercise: same analysis, but formally
- Still: we don't do full general equilibrium analysis
- Just "semi-partial" equilibrium analysis focusing on the two markets for chocolate and licorice.

Partial vs General

Equilibrium:

$$
\begin{aligned}
& D_{X}\left(P_{X}, P_{L}\right)=S_{X}\left(P_{X}-T_{X}\right) \\
& D_{L}\left(P_{X}, P_{L}\right)=S_{L}\left(P_{L}\right)
\end{aligned}
$$

Two equations in two unknowns $\left(P_{x}, P_{L}\right)$
Define prices as functions of T_{X}

Partial vs General

Equilibrium:

$$
\begin{aligned}
& D_{X}\left(P_{X}, P_{L}\right)=S_{X}\left(P_{X}-T_{X}\right) \\
& D_{L}\left(P_{X}, P_{L}\right)=S_{L}\left(P_{L}\right)
\end{aligned}
$$

Differentiate to find effect of an increase in tax $\left(\mathrm{dT}_{X}\right)$ on prices $\left(\mathrm{dP}_{X}\right.$ and $\left.\mathrm{dP}_{L}\right)$:

$$
\begin{aligned}
& D_{X}^{X} \cdot d P_{X}+D_{X}^{L} \cdot d P_{L}=S_{X}^{\prime} \cdot d P_{X}-S_{X}^{\prime} \cdot d T \\
& D_{L}^{X} \cdot d P_{X}+D_{L}^{L} \cdot d P_{L}=S_{L}^{\prime} \cdot d P_{L}
\end{aligned}
$$

Partial vs General

Equilibrium:
$D_{X}\left(P_{X}, P_{L}\right)=S_{X}\left(P_{X}-T_{X}\right)$
$D_{L}\left(P_{X}, P_{L}\right)=S_{L}\left(P_{L}\right)$

Differentiate to find effect of an increase in $\operatorname{tax}\left(\mathrm{dT}_{X}\right)$ on prices $\left(\mathrm{dP}_{X}\right.$ and $\left.\mathrm{dP}_{L}\right)$:
$D_{X}^{X} \cdot d P_{X}+D_{X}^{L} \cdot d P_{L}=S_{X}^{\prime} \cdot d P_{X}-S_{X}^{\prime} \cdot d T$
$D_{L}^{X} \cdot d P_{X}+D_{L}^{L} \cdot d P_{L}=S_{L}^{\prime} \cdot d P_{L}$

Collect terms:

$$
\begin{aligned}
& {\left[S_{X}^{\prime}-D_{X}^{X}\right] \cdot d P_{X}-D_{X}^{L} \cdot d P_{L}=S_{X}^{\prime} \cdot d T} \\
& {\left[S_{L}^{\prime}-D_{L}^{L}\right] \cdot d P_{L}-D_{L}^{X} \cdot d P_{X}=0}
\end{aligned}
$$

Partial vs General

Divide by $\mathrm{S}=\mathrm{D}$, Multiply by P :

$$
\begin{aligned}
& {\left[\frac{S_{X}^{\prime} \cdot P_{X}}{S_{X}}-\frac{D_{X}^{X} \cdot P_{X}}{D_{X}}\right] \cdot d P_{X}-\frac{D_{X}^{L} \cdot P_{L}}{D_{X}} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\frac{S_{X}^{\prime} \cdot P_{X}}{S_{X}} \cdot d T} \\
& {\left[\frac{S_{L}^{\prime} \cdot P_{L}}{S_{L}}-\frac{D_{L}^{L} \cdot P_{L}}{D_{L}}\right] \cdot d P_{L}-\frac{D_{L}^{X} \cdot P_{X}}{D_{L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Partial vs General

Divide by $\mathrm{S}=\mathrm{D}$, Multiply by P :

$$
\begin{aligned}
& {\left[\frac{S_{X}^{\prime} \cdot P_{X}}{S_{X}}-\frac{D_{X}^{X} \cdot P_{X}}{D_{X}}\right] \cdot d P_{X}-\frac{D_{X}^{L} \cdot P_{L}}{D_{X}} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\frac{S_{X}^{\prime} \cdot P_{X}}{S_{X}} \cdot d T} \\
& {\left[\frac{S_{L}^{\prime} \cdot P_{L}}{S_{L}}-\frac{D_{L}^{L} \cdot P_{L}}{D_{L}}\right] \cdot d P_{L}-\frac{D_{L}^{X} \cdot P_{X}}{D_{L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Recall $\mathrm{P}^{*}=P-T$

$$
\begin{aligned}
& {\left[\frac{S_{X}^{\prime} \cdot\left(P_{X}-T_{X}\right)}{S_{X}} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\frac{D_{X}^{X} \cdot P_{X}}{D_{X}}\right] \cdot d P_{X}-\frac{D_{X}^{L} \cdot P_{L}}{D_{X}} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\frac{S_{X}^{\prime} \cdot\left(P_{X}-T_{X}\right)}{S_{X}} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& {\left[\frac{S_{L}^{\prime} \cdot P_{L}}{S_{L}}-\frac{D_{L}^{L} \cdot P_{L}}{D_{L}}\right] \cdot d P_{L}-\frac{D_{L}^{X} \cdot P_{X}}{D_{L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Partial vs General

Recall definition of elasticities

$$
\begin{array}{ll}
\varepsilon_{S}^{X}=\frac{S_{X}^{\prime} \cdot\left(P_{X}-T_{X}\right)}{S_{X}} & \text { Price elasticity of supply } \\
\varepsilon_{D}^{X X}=\frac{D_{X}^{X} \cdot P_{X}}{D_{X}} & \text { Own-price elasticity of demand } \\
\varepsilon_{D}^{X L}=\frac{D_{X}^{L} \cdot P_{L}}{D_{X}} & \text { Cross-price elasticity of demand }
\end{array}
$$

Partial vs General

Substitute elasticities

$$
\begin{aligned}
& {\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& {\left[\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}\right] \cdot d P_{L}-\varepsilon_{D}^{L X} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Partial vs General

Substitute elasticities

$$
\begin{aligned}
& {\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& {\left[\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}\right] \cdot d P_{L}-\varepsilon_{D}^{L X} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Rearrange

$$
\begin{aligned}
& {\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& d P_{L}=\frac{\varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}
\end{aligned}
$$

Partial vs General

Substitute elasticities

$$
\begin{aligned}
& {\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& {\left[\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}\right] \cdot d P_{L}-\varepsilon_{D}^{L X} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}=0}
\end{aligned}
$$

Rearrange

$$
\begin{aligned}
& {\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot d P_{L}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T} \\
& d P_{L}=\frac{\varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}
\end{aligned}
$$

Partial vs General

Substitute Licorice market into Chocolate market

$$
\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot\left\{\frac{\varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}\right\}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T
$$

Partial vs General

Substitute Licorice market into Chocolate market

$$
\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot\left\{\frac{\varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}\right\}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T
$$

Rearrange

$$
\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}-\frac{\varepsilon_{D}^{X L} \cdot \varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}}\right] \cdot d P_{X}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T
$$

Partial vs General

Substitute Licorice market into Chocolate market

$$
\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}\right] \cdot d P_{X}-\varepsilon_{D}^{X L} \cdot \frac{P_{X}}{P_{L}} \cdot\left\{\frac{\varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{L}}{P_{X}} \cdot d P_{X}\right\}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T
$$

Rearrange

$$
\left[\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}}-\varepsilon_{D}^{X X}-\frac{\varepsilon_{D}^{X L} \cdot \varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}}\right] \cdot d P_{X}=\varepsilon_{S}^{X} \cdot \frac{P_{X}}{P_{X}-T_{X}} \cdot d T
$$

Rearrange

$$
\frac{d P_{X}}{d T}=\frac{\varepsilon_{S}^{X}}{\varepsilon_{S}^{X}-\varepsilon_{D}^{X X} \cdot \frac{P_{X}-T_{X}}{P_{X}}-\frac{\varepsilon_{D}^{X L} \cdot \varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L}} \cdot \frac{P_{X}-T_{X}}{P_{X}}}
$$

Partial vs General

Gereral

$$
\frac{d P_{X}}{d T_{X}}=\frac{\varepsilon_{S}^{X}}{\varepsilon_{S}^{X}-\varepsilon_{D}^{X X} \cdot \frac{P_{X}-T_{X}}{P_{X}}-\frac{\varepsilon_{D}^{X L} \cdot \varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}} \cdot \frac{P_{X}-T_{X}}{P_{X}}}
$$

$$
\frac{\varepsilon_{D}^{X L} \cdot \varepsilon_{D}^{L X}}{\varepsilon_{S}^{L}-\varepsilon_{D}^{L L}}>0
$$

Partial

$$
\frac{d P_{X}}{d T_{X}}=\frac{\varepsilon_{S}^{X}}{\varepsilon_{S}^{X}-\varepsilon_{D}^{X X} \cdot \frac{P_{X}-T_{X}}{P_{X}}}
$$

Partial equilibrium analysis underestimates the effect on price

Partial vs General

- Exercise: same analysis, but with explicit functional forms

Partial vs General

- Linear model
- Consumers

$$
\begin{array}{ll}
\quad U(l, x, z)=\alpha \cdot l+\alpha \cdot x-\frac{\beta}{2} \cdot l^{2}-\frac{\beta}{2} \cdot x^{2}-\sigma \cdot l \cdot x+z \\
p_{l} \cdot l+p_{x} \cdot x+z=I & \text { Simplify } \\
& \text {-1 consumer } \\
- \text { Firms } & \text {-1 chocolate firm } \\
C(l)=c \cdot l+\frac{\delta}{2} \cdot l^{2} & \text {-1 licorice firm } \\
C(x)=c \cdot x+\frac{\delta}{2} \cdot x^{2}+t \cdot x & \text {-But, price takers }
\end{array}
$$

Partial vs General

- "Utility"

$$
\tilde{U}=\alpha \cdot l+\alpha \cdot x-\frac{\beta}{2} \cdot l^{2}-\frac{\beta}{2} \cdot x^{2}-\sigma \cdot l \cdot x+\left\{I-p_{l} \cdot l-p_{x} \cdot x\right\}
$$

- FOC

$$
\begin{aligned}
& \frac{\partial \tilde{U}}{\partial l}=\alpha-\beta \cdot l-\sigma \cdot x-p_{l}=0 \\
& \frac{\partial \tilde{u}}{\partial x}=\alpha-\beta \cdot x-\sigma \cdot l-p_{x}=0
\end{aligned}
$$

To find demand functions, solve system of inverse demand functions for x and I.

$$
\begin{aligned}
& p_{l}=\alpha-\beta \cdot l-\sigma \cdot x \\
& p_{x}=\alpha-\beta \cdot x-\sigma \cdot l
\end{aligned}
$$

Partial vs General

- Demand

$$
\begin{aligned}
& l=A-B \cdot p_{l}+S \cdot p_{x} \\
& x=A-B \cdot p_{x}+S \cdot p_{l} \\
& A \equiv \frac{\beta-\sigma}{\beta^{2}-\sigma^{2}} \cdot \alpha>0 \quad B \equiv \frac{\beta}{\beta^{2}-\sigma^{2}}>0 \quad S \equiv \frac{\sigma}{\beta^{2}-\sigma^{2}}>0
\end{aligned}
$$

Partial vs General

$$
\left.\begin{array}{l}
p_{l}=\alpha-\beta \cdot l-\sigma \cdot x \\
p_{x}=\alpha-\beta \cdot x-\sigma \cdot l
\end{array} \rightarrow \quad \begin{array}{l}
\beta \cdot l+\sigma \cdot x=\alpha-p_{l} \\
\beta \cdot x+\sigma \cdot l=\alpha-p_{x}
\end{array}\right] \begin{aligned}
& \beta=\frac{\alpha-p_{x}-\sigma \cdot l}{\beta} \\
& \Rightarrow \quad \beta \cdot l+\sigma \cdot\left\{\frac{\alpha-p_{x}-\sigma \cdot l}{\beta}\right\}=\alpha-p_{l} \\
& \Rightarrow \quad l=\frac{\beta-\sigma}{\beta^{2}-\sigma^{2}} \cdot \alpha-\frac{\beta}{\beta^{2}-\sigma^{2}} \cdot p_{l}+\frac{\sigma}{\beta^{2}-\sigma^{2}} \cdot p_{x}
\end{aligned}
$$

Partial vs General

Cost

$$
\begin{aligned}
& C(l)=c \cdot l+\frac{\delta}{2} \cdot l^{2} \\
& C(x)=(c+t) \cdot x+\frac{\delta}{2} \cdot x^{2}
\end{aligned}
$$

Marginal cost

$$
\begin{aligned}
& M C(l)=c+\delta \cdot l \\
& M C(x)=(c+t)+\delta \cdot x
\end{aligned}
$$

Inverse supply

$$
\begin{aligned}
& p_{l}=c+\delta \cdot l \\
& p_{x}=(c+t)+\delta \cdot x
\end{aligned}
$$

Supply

$$
\begin{aligned}
& l=-D \cdot c+D \cdot p_{l} \\
& x=-D \cdot c-D \cdot t+D \cdot p_{x}
\end{aligned}
$$

$$
D \equiv 1 / \delta
$$

Partial vs General

Supply

$$
\begin{aligned}
& l=-D \cdot c+D \cdot p_{l} \\
& x=-D \cdot c-D \cdot t+D \cdot p_{x}
\end{aligned}
$$

Demand

$$
\begin{aligned}
& l=A-B \cdot p_{l}+S \cdot p_{x} \\
& x=A-B \cdot p_{x}+S \cdot p_{l}
\end{aligned}
$$

Equilibrium

$$
\begin{aligned}
& A-B \cdot p_{l}+S \cdot p_{x}=-D \cdot c+D \cdot p_{l} \\
& A-B \cdot p_{x}+S \cdot p_{l}=-D \cdot c-D \cdot t+D \cdot p_{x}
\end{aligned}
$$

Partial vs General

Equilibrium, rewritten

$$
\begin{aligned}
& \text { Licorice market: } \quad(D+B) \cdot p_{l}-S \cdot p_{x}=(A+D \cdot c) \\
& \text { Chocolate market: } \quad(D+B) \cdot p_{x}-S \cdot p_{l}=(A+D \cdot c)+D \cdot t
\end{aligned}
$$

Effect of change in tax on chocolate

Licorice market: $\quad(D+B) \cdot d p_{l}-S \cdot d p_{x}=0$
Chocolate market: $(D+B) \cdot d p_{x}-S \cdot d p_{l}=D \cdot d t$

Partial vs General

Effect of change in tax on chocolate

Licorice market: $\quad \frac{d p_{l}}{d t}=\frac{S}{D+B} \cdot \frac{d p_{x}}{d t}$
Chocolate market: $\frac{d p_{x}}{d t}=\frac{D}{D+B}+\frac{S}{D+B} \cdot \frac{d p_{l}}{d t}$

Partial equilibrium analysis falsely assumes $\mathrm{dp}_{\mathrm{l}}=0$

Chocolate market: $\frac{d p_{x}}{d t}=\frac{D}{D+B}$

Partial vs General

Effect of change in tax on chocolate

Licorice market: $\quad \frac{d p_{l}}{d t}=\frac{S}{D+B} \cdot \frac{d p_{x}}{d t}$
Chocolate market: $\frac{d p_{x}}{d t}=\frac{D}{D+B}+\frac{S}{D+B} \cdot \frac{d p_{l}}{d t}$

General equilibrium analysis

Licorice market: $\quad \frac{d p_{l}}{d t}=\frac{S}{D+B} \cdot \frac{d p_{x}}{d t}$
Chocolate market: $\frac{d p_{x}}{d t}=\frac{D}{D+B}+\frac{S}{D+B} \cdot\left\{\frac{S}{D+B} \cdot \frac{d p_{x}}{d t}\right\}$

Partial vs General

General equilibrium analysis

$$
\text { Chocolate market: } \quad \frac{d p_{x}}{d t}=\frac{D}{(D+B)-\left[\frac{s^{2}}{D+B}\right]}
$$

Partial vs General

General equilibrium analysis

$$
\frac{d p_{x}}{d t}=\frac{D}{(D+B)-\left[\frac{s^{2}}{D+B}\right]}
$$

Partial equilibrium analysis

$$
\frac{d p_{x}}{d t}=\frac{D}{D+B}
$$

Partial equilibrium analysis

underestimates the effect on price

Partial vs General

