

School of Business, Economics and Law GÖTEBORG UNIVERSITY

Dynamic Games & Cartels

Johan.Stennek@Economics.gu.se

School of Business, Economics and Law GÖTEBORG UNIVERSITY

Dynamic Games

Dynamic Games & Cartels

- Imperfect information
 - To study cartels, we nee games where firm take

Incomplete information = When players don't know each others' payoff functions

- Example: they set prices simultaneously the beginning of every day
- This is an example of imperfect information
 - When several players make decisions at the same time
 - When a player does not know what others did in the past

Dynamic Games & Cartels

- Subgame perfect equilibrium
 - In games with imperfect information, we cannot do backwards induction as before
 - But, almost the same
 - Called SPE
- Illustration
 - Before studying cartels
 - Look at simpler problem: Entry deterrence

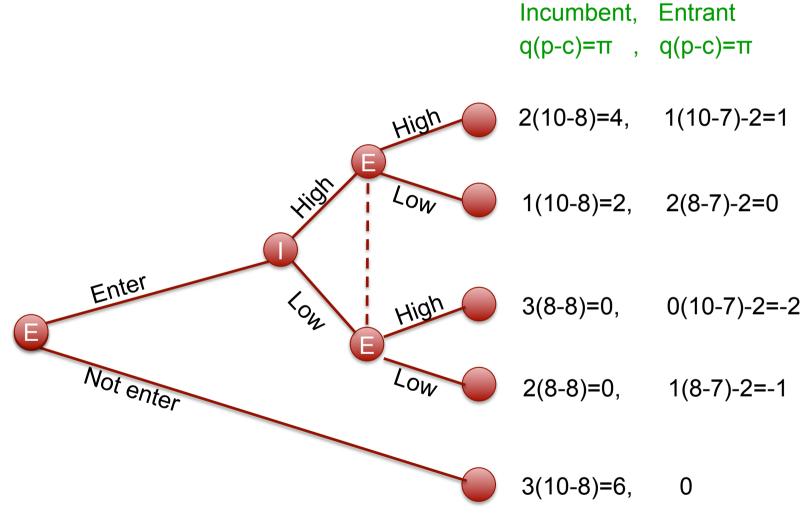
• Problem

- Monopoly profits may trigger entry
- Solution
 - Threaten new firms with price war
- Problem
 - Low prices also costly to incumbent
- Question: Credible?

• Timing

- Time 1: Entrant decides whether to enter
- Time 2: Firms set prices simultaneously

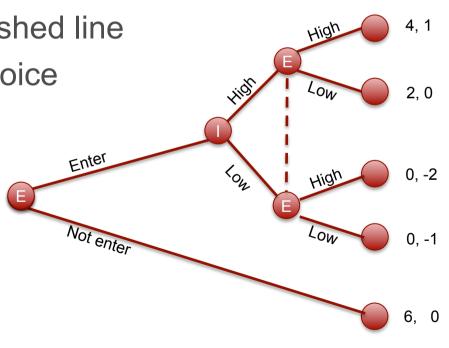
• Demand

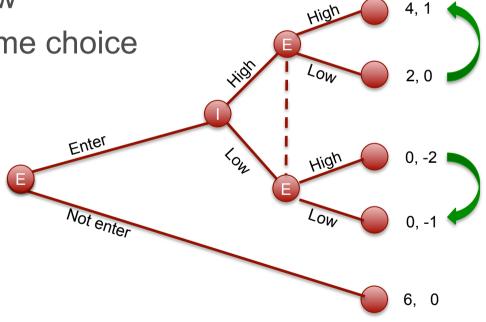

- Value of first unit V; second unit worthless
- Perfect substitutes
- 2 consumers aware of entrant; buy from cheapest
- 1 consumer not aware; buys from incumbent

Technology

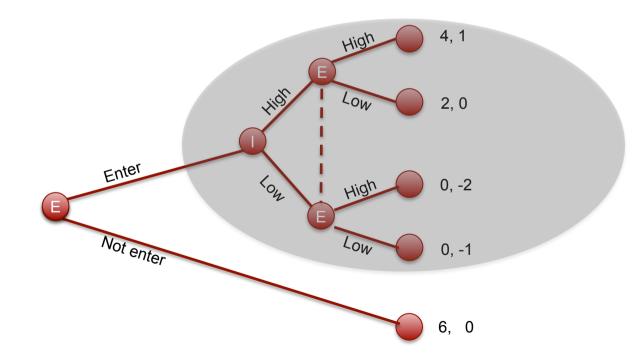
- Incumbent's marginal cost $C_1 = 8$
- Entrant's marginal cost $C_E = 7$
- Entry cost K = 2

• Simplifications

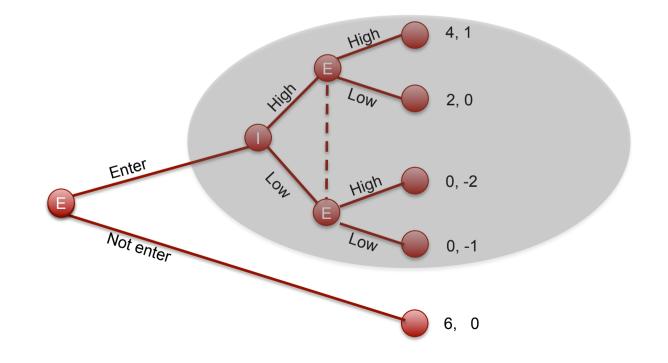

- If entry, firms can choose between two prices
 - P^H = V = 10
 - P^L = C_I = 8
- If no entry, incumbent charges
 - P^H = V = 10


11

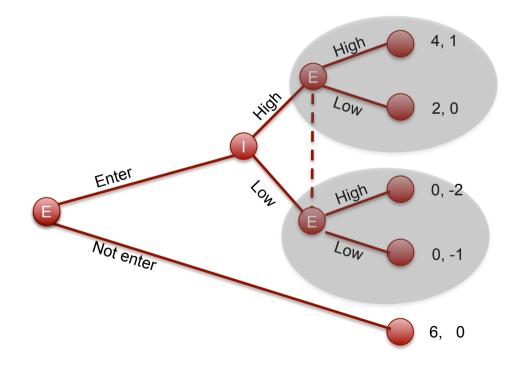
Imperfect information


- Pricing decisions simultaneous
- E doesn't know which node he is at
- Information set dashed line
- Must make same choice

- Backwards induction must be modified
 - E prefers High if High
 - E prefers Low if Low
 - But, must make same choice



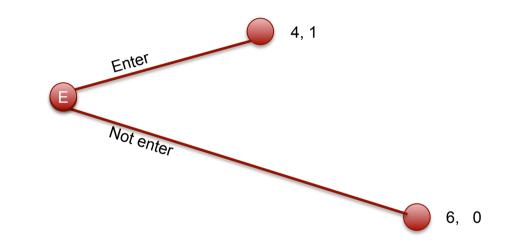
 Decisions in second period constitutes a game tree in itself = Sub-game



• Sub-game perfect equilibrium

- An equilibrium of complete game should prescribe equilibrium play in all sub-games
- Otherwise someone would deviate if sub-game reached

- E's decisions do *not* constitute sub-games
 - Cannot split information sets


• Normal form of pricing sub-game

- Incumbent is row-player
- Both have two strategies (complete plans of actions)

	High	Low
High	<u>4, 1</u>	<u>2,</u> 0
Low	0, -2	0, <u>-1</u>

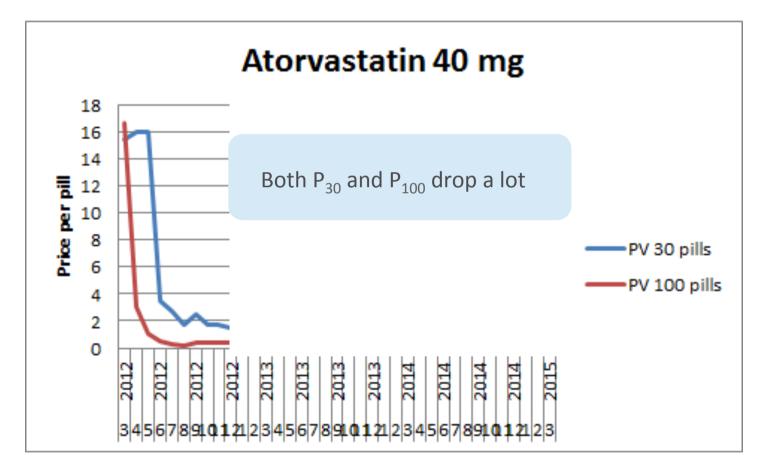
- Sole equilibrium: (high, high)
- Equilibrium payoffs: (4, 1)

• Truncated game

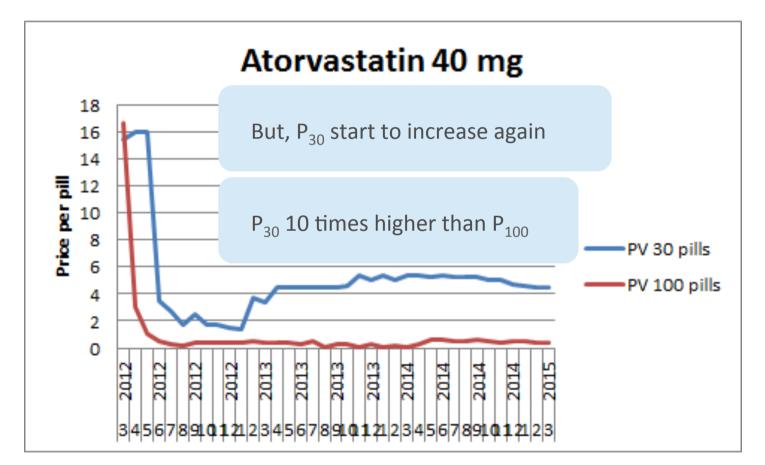
- Entrant must enter

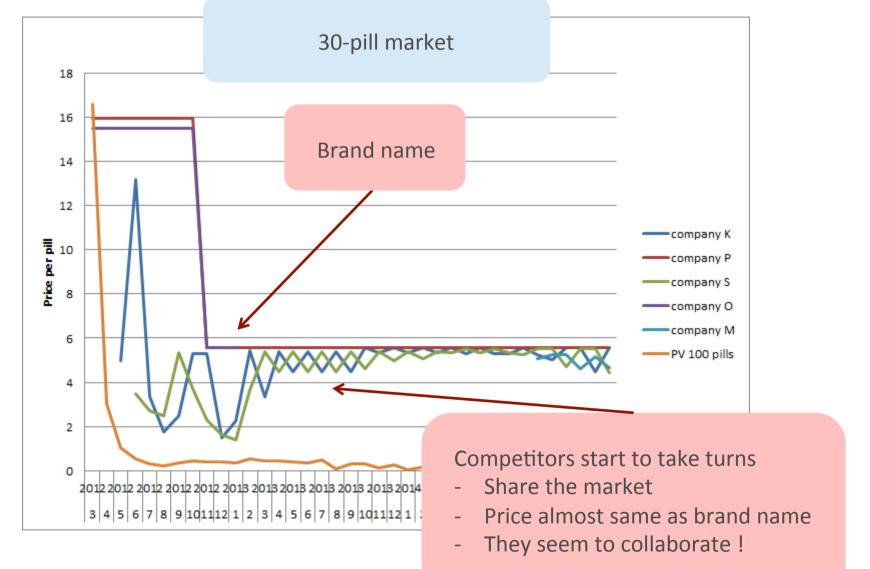
- Unique sub-game perfect equilibrium predicts
 - Entrant enters
 - Both charge high prices
 - That is: Incumbent's threat to start price war is not credible.
 Better to exploit captive consumers.
- There are other Nash equilibria. Not credible.

School of Business, Economics and Law GÖTEBORG UNIVERSITY


- Oligopolistic competition
 - Lower prices and profits
- <u>Q</u>: Why not cooperate instead?
 - Common price policy
 - Share the market
- A: Not feasible
 - Incentive to cheat
 - Agreement not enforced by courts

- But, cartels do exist
 - Sweden: Petrol, Asphalt
 - Europe/EU: Sotheby and Christies
 - Generic drugs?


- National auction
 - All drugs without patent
 - Every month
- Idea
 - Lowest price = "product of the month"
 - Large market share
 - Recommended
 - Subsidy does not cover "over-charge"
- But
 - Also "brand name" usually gets market share


- Example: Atorvastatin
 - Reduces cholesterol
 - Patent expired in 2012
 - Sold in different package sizes, e.g.:
 - 100-pills: large market => many competitors
 - 30-pills: smaller market => fewer competitors

Price of the product of the month

Price of the product of the month

- <u>Q</u>: Collaboration What do we miss?
 - Markets are long lived
 - Changes the situation dramatically

Agenda

Issues

- How can cartels enforce their agreements?
- What markets are at risk?
- How can we fight cartels?

First a little bit of game-theory... **"Folk Theorem"**

• Repeated game theory

- Model to explain how people can cooperate

- Recall "prisoners' dilemma"
 - Two players
 - Two strategies: Cooperate and Cheat
 - Payoff matrix:

	Cooperate	Cheat
Cooperate	10, 10	-1, 18
Cheat	18, -1	0, 0

• Unique Nash equilibrium: both cheat

	Cooperate	Cheat
Cooperate	10, 10	-1, 18
Cheat	↓ 18, -1	→ ↓ 0,0

In fact: cheat is dominating strategy

- Now repeat PD game infinitely many times
 - t = 1, 2, 3,
 - Payoff = discounted sum of period payoffs
 - Complete and "almost perfect" information
- Strategy
 - Instruction telling player what to do at every decision node

- Define: Trigger strategy
 - Period 1: Cooperate
 - Period t = 2, 3,
 - Cooperate, if <u>both</u> have cooperated <u>all</u> previous periods
 - Cheat, otherwise
- Note
 - This is only a definition a possible way to behave
 - If both follow TS, then cooperation (at every t)
 - Question: when would players behave like this?

- Game theoretic details
 - Need to study if TS is Sub-game perfect equilibrium
 - Problem: No last period
 - We will skip these "details"
 - Take short-cut

- Analysis
 - Assume A follows TS
 - Does B want to follow TS (in every subgame)?
 - If so, (TS, TS) is SPE
- Need to consider two cases (types of subgames)
 - When nobody has cheated in the past
 - When somebody has cheated in the past

 Assume: nobody has cheated in the past Follow TS

$$U^{cooperate} = 10 + \delta \cdot 10 + \delta^2 \cdot 10 + \delta^3 \cdot 10 + \dots = 10 \cdot \frac{1}{1 - \delta} \qquad (\delta < 1)$$

Cheat

$$U^{cheat} = 18 + \delta \cdot 0 + \delta^2 \cdot 0 + \delta^3 \cdot 0 + \dots = 18$$

No deviation if

$$U^{cooperate} \ge U^{cheat} \Leftrightarrow \qquad 10 \cdot \frac{1}{1 - \delta} \ge 18 \Leftrightarrow \qquad \delta \ge \frac{4}{9}$$

Assume: somebody has cheated in the past

Follow TS $U^{cooperate} = 0 + \delta \cdot 0 + \delta^2 \cdot 0 + \delta^3 \cdot 0 + \dots = 0$

Cheat (nothing to gain even in the short run) $U^{cheat} = 0 + \delta \cdot 0 + \delta^2 \cdot 0 + \delta^3 \cdot 0 + \dots = 0$

- Folk theorem
 - IF a game (e.g. prisoners' dilemma) is repeated infinitely many times, and
 - IF the players are sufficiently patient,
 - THEN, they can enforce cooperative outcomes, simply by threating not to cooperate anymore if somebody cheats.

- Examples
 - Externalities
 - Public goods
 - Cartels
 - •••

- But, multiple equilibria
 - Also the strategy "Always cheat" is a subgameperfect equilibrium
- Conclusion
 - Folk-theorem shows conditions under which cooperation **might** arise, not that it must arise

How cartels work How can they enforce their agreements?

• Setup

- Players: Two firms
- Actions: Set prices in each period (Bertrand)
- Time: t = 1, 2, 3, … (infinite)
- Information: Complete and "almost perfect"
- Payoff: $\Pi_i = \Sigma_t \, \delta^{t-1} \, \pi_i(p_1^t, p_2^t)$ [$\delta < 1$ is discount factor]

• Definitions π = period profit of a firm

π^{N}	=	All firms compete (Nash equilibrium)	p = c
π ^C	=	All firms charge cartel (= monopoly) price	p ^m
π^{D}	=	Best one-stage deviation when all other firms charge cartel price	p < p ^m

$$\pi^{D} > \pi^{C} > \pi^{N}$$

- Trigger Strategy Definition
 - Start out charging the monopoly price
 - If no firm has cheated in the past,
 - set monopoly price
 - If someone has cheated in the past,
 - set price equal to one stage Nash (in Bertrand p = c)

• Claim

 If A behaves according to TS, it is in B's interest to also follow TS in every subgame, and vice versa.

• Note

- No incentives to deviate \rightarrow [TS, TS] = SPE
- Monopoly price will prevail
- Cooperation hinges on threat of price war

- Proof Cooperative phase
 - Assume no one has deviated in the past
 - Assume B sticks to TS
 - Q: Does A have incentive to deviate?

• If A sticks to TS

$$V^{+} = \pi^{C} + \delta \pi^{C} + \delta^{2} \pi^{C} + \dots = \frac{1}{1 - \delta} \pi^{C}$$

- If A deviates one period
 - Maximum profit during the period is π^{D}
 - Then, war starts: π^N

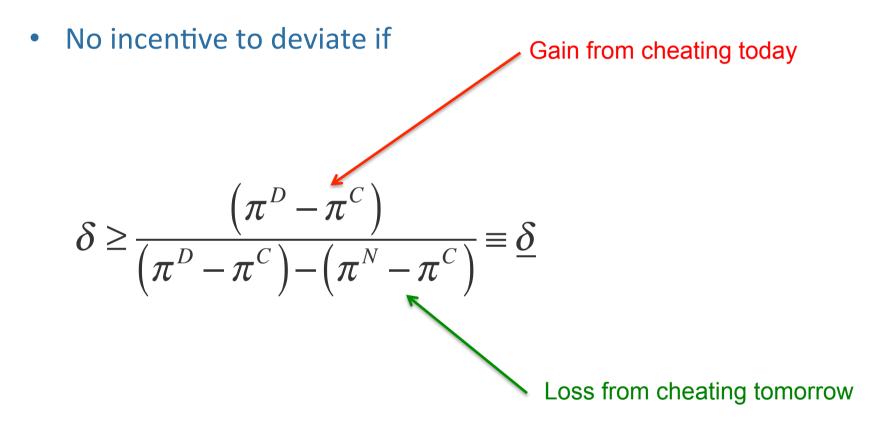
$$V^{D} = \pi^{D} + \delta \pi^{N} + \delta^{2} \pi^{N} + \dots = \pi^{D} + \frac{\delta}{1 - \delta} \pi^{N}$$

• No incentive to deviate if

$$V^+ \ge V^D$$

• No incentive to deviate if

$$V^+ \ge V^D$$


$$\pi^{C} + \frac{\delta}{1-\delta}\pi^{C} \ge \pi^{D} + \frac{\delta}{1-\delta}\pi^{N}$$

• No incentive to deviate if

$$V^+ \ge V^D$$

$$\pi^{C} + \frac{\delta}{1-\delta}\pi^{C} \ge \pi^{D} + \frac{\delta}{1-\delta}\pi^{N}$$

$$\delta \geq \frac{\left(\pi^{D} - \pi^{C}\right)}{\left(\pi^{D} - \pi^{C}\right) - \left(\pi^{N} - \pi^{C}\right)} \equiv \underline{\delta}$$

• Example: Bertrand competition with homogenous goods

$$\pi^{N} = 0$$
 $\pi^{C} = \pi^{monopoly} / 2$ $\pi^{D} = \pi^{monopoly}$

$$\delta \geq \frac{\pi^{monopoly} - \pi^{monopoly} / 2}{\left[\pi^{monopoly} - \pi^{monopoly} / 2\right] - \left[0 - \pi^{monopoly} / 2\right]} = \frac{1}{2}$$

- Proof Punishment phase
 - Assume someone has deviated in the past
 - Assume B sticks to TS
 - Q: Does A have incentive to deviate?

- Proof Punishment phase
 - If A also sticks to TS
 - $V^{-} = \pi^{N} + \delta \pi^{N} + \delta^{2} \pi^{N} + ... = \pi^{N}/(1-\delta)$
 - If A deviates one period
 - Maximum profit during the period is still $\pi^{\mathbb{N}}$
 - Subsequent periods: war still continues, giving profit $\pi^{\mathbb{N}}$
 - $V^{d} = \pi^{N} + \delta \pi^{N} + \delta^{2} \pi^{N} + ... = \pi^{N}/(1-\delta)$

- <u>Q</u>: Conclusion
 - Cartels self-enforcing
 - If firms *sufficiently patient*
- Policy implications
 - Not sufficient to deny firms legal enforcement
 - Necessary to make collusion illegal and punish

• Competition is also possible

- Competitive Strategy: Always set price equal to cost
- If A follows CS, B has incentive to follow CS
- CS is also SPE
- What should we predict?
 - Economics has no answer today
- Economics still useful
 - Delineate necessary conditions for collusion (e.g. interest rate).

What Markets have High Risk of Cartels?

Which Markets?

- Factors facilitating collusion
 - Discount factor (interest rate)
 - Concentration
 - Entry barriers
 - Frequency of interaction
 - Transparency
 - Business cycles and fluctuations
 - Firm differences
- How to use the list
 - Identify potentially problematic industries
 - In cases, analyze if allegations plausible

• If a duopoly firm cheats

- » Gain (first period):
- » Loss (subsequently):

- If a duopoly firm cheats
 - » Gain (first period):
 - » Loss (subsequently):

 $\pi^{m}/2 = \pi^{m} - \pi^{m}/2$ $\pi^{m}/2 = 0 - \pi^{m}/2$

- If a duopoly firm cheats
 - » Gain (first period):
 - » Loss (subsequently):

 $\pi^{m}/2 = \pi^{m} - \pi^{m}/2$): $-\pi^{m}/2 = 0 - \pi^{m}/2$

• If a triopoly firm cheats

- » Gain (first period):
- » Loss (subsequently):

• If a duopoly firm cheats

» Gain (first period):	π ^m /2	$= \pi^{m} - \pi^{m}/2$
» Loss (subsequently):	-π ^m /2	$= 0 - \pi^{m}/2$

• If a triopoly firm cheats

>>	Gain (first period):	2π ^m /3	$= \pi^{m} - \pi^{m}/3$
>>>	Loss (subsequently):	-π ^m /3	$= 0 - \pi^{m}/3$

- If a duopoly firm cheats
 - » Gain (first period): $\pi^m/2$ $= \pi^m \pi^m/2$ » Loss (subsequently): $-\pi^m/2$ $= 0 \pi^m/2$

• If a triopoly firm cheats

» Gain (first period):	2π ^m /3	$= \pi^{m} - \pi^{m}/3$
» Loss (subsequently):	-π ^m /3	$= 0 - \pi^{m}/3$

• Prediction

- Low concentration \rightarrow more tempting to cheat \rightarrow cartels less stable