Dynamic Games and Bargaining

Johan Stennek

Dynamic Games

- Logic of cartels
- Idea: We agree to both charge high prices and share the market
- Problem: Both have incentive to cheat
- Solution: Threat to punish cheater tomorrow
- Question: Will we really?

Dynamic Games

- Logic of negotiations
- People continue haggling until they are satisfied
- People with low time-cost (patient people) have strategic advantage

Dynamic Games

- Common theme
- Often interaction takes place over time
- If we wish to understand cartels and bargaining we must take the time-dimension into account
- Normal form analysis and Nash equilibrium will lead us wrong

War \& Peace I
 (Non-credible threats)

War \& Peace

- Two countries: East and West
- Fight over an island, currently part of East
- West may attack (land an army) or not
- East may defend or not (retreating over bridge)
- If war, both have 50% chance of winning
- Value of island $=V$; Cost of war $=C>V / 2$

War \& Peace

Now, let's describe this situation as a "decision tree" with many "deciders"

Game Tree

(Extensive form game)

War \& Peace

War \& Peace

War \& Peace

First number is West's payoff

War \& Peace

War \& Peace

- Methodology
- Represent order of moves
= "game tree"
- Procedure:

Start analyzing last period, move backwards
= "backwards induction"

War \& Peace

- Game Trees (Decision tree with several "deciders")
- Nodes = Decisions
- Branches = Actions
- End-nodes = Outcomes

War \& Peace

- Extensive form = "game tree"
- Players
- Decisions players have to take
- Actions available at each decision
- Order of decisions
- Payoff to all players for all possible outcomes

War \& Peace

- Normal form
- Always possible to reduce extensive form to normal form
- How?
- Find (Players, Strategies, Payoffs) in the tree
- Player i's strategy
- A complete plan of action for player i
- Specifies an action at every node belonging to i

War \& Peace

- Strategies in War \& Peace
- West: Attack, Not
- East: Defend, Retreat

War \& Peace

Q: Compute Nash equilibria

	Defend	Retreat
Attack	$1 / 2 \mathrm{~V}-\mathrm{C}, 1 / 2 \mathrm{~V}-\mathrm{C}$	$\mathrm{V}, 0$
Not	$0, \mathrm{~V}$	$0, \mathrm{~V}$

War \& Peace

- Two Nash equilibria
- Attack, Retreat \longleftarrow Same as backwards induction
- Not attack, Defend

Unreasonable prediction
East threatens to defend the island.
And if West believes it, it does not attack.
Then, East does not have to fight.
But if West would attack, then East would retreat. Knowing this, West does not believe the threat.

It is a non-credible threat

War \& Peace

- Conclusion for game theory analysis
- Need extensive form and backwards induction to get rid of non-reasonable Nash equilibria (non-credible threats).
- Conclusion for Generals (and others)
- Threats (and promises) must be credible

War \& Peace II (Commitment)

War \& Peace

- East reconsiders its position before West attacks
- Gen. 1: "Burn bridge - makes retreat impossible!"
- Gen. 2: "Then war - the worst possible outcome!"
- Q: How analyze?
- Write up new extensive form game tree
- Apply backwards induction

War \& Peace

War \& Peace

War \& Peace

War \& Peace

War \& Peace

Equilibrium provides description of what every player will do at every decision node

War \& Peace

Also the decisions at the nodes that will never be reached are sensible decisions (Easts second decision)

War \& Peace

At date 2, West makes different decisions, depending on what East did at date 1.

War \& Peace

- Conclusion
- East's threat to defend made credible
- Pre-commitment

War \& Peace

- Two newspaper articles (in Swedish)
- Pellnäs:
- West needs new credible defense doctrine
- We need to make clear to Putin when we will take the fight
- Agrell:
- We cannot use "game theory" to predict the behavior of countries (Russia) - they are not rational

Bargaining Bilateral \& Market Power

Johan Stennek

Not included:

1. appendixes in lecture notes
2. Ch. 7.4

Bilateral Market Power

 Example: Food Retailing
Food Retailing

- Food retailers are huge

The world's largest food retailers in 2003	
Company	Food Sales (US\$mn)
Wal-Mart	121566
Carrefour	77330
Ahold	72414
Tesco	40907
Kroger	39320
Rewe	36483
Aldi	36189
Ito-Yokado	35812
Metro Group ITM	34700

Food Retailing

- Retail markets are highly concentrated

Tabell 1a. Dagligvarukedjornas andel av den svenska marknaden			
Kedja	Butiker (antal)	Butiksyta (kvm)	Omsättning (miljarder kr)
Axfood	803 (24%)	625855 (18%)	34,6
Bergendahls	229	328196	13,6
	(7%)	(10%)	(7%)
Coop	730	983255	41,4
	(22%)	(29%)	(21%)
ICA	1379	1240602	96,6
	(41%)	(36%)	(50%)
Lidl	146	170767	5,2
	(4%)	(5%)	(3%)
Netto	105	70603	3,0
	(3%)	(2%)	$[2 \%)$

Food Retailing

- Food manufacturers
- Some are huge:
- Kraft Food, Nestle, Scan
- Annual sales tenth of billions of Euros
- Some are tiny:
- local cheese

Food Retailing

- Mutual dependence
- Some brands = Must have
- ICA "must" sell Coke
- Otherwise many families would shop at Coop
- Some retailers $=$ Must channel
- Coke "must" sell via ICA to be active in Sweden
- Probably large share of Coke's sales in Sweden
- Both would lose if ICA would not sell Coke

Food Retailing

- Mutual dependence
- Manufacturers cannot dictate wholesale prices
- Retailers cannot dictate wholesale prices
- Thus
- They have to negotiate and agree
- In particular
- Also retailers have market power = buyer power

Food Retailing

- Large retailers pay lower prices (= more buyer power)

Retailer	Market Share (CC Table 5:3, p. 44)	Price (CC Table 5, p. 435)
Tesco	24.6	100.0
Sainsbury	20.7	101.6
Asda	13.4	102.3
Somerfield	8.5	103.0
Safeway	12.5	103.1
Morrison	4.3	104.6
Iceland	0.1	105.3
Waitrose	3.3	109.4
Booth	0.1	109.5
Netto	0.5	110.1
Budgens	0.4	111.1

Other examples

- Labor markets
- Vårdförbundet vs Landsting
- Relation-specific investments
- Car manufacturers vs producers of parts

Food Retailing

- Questions
- How analyze bargaining in intermediate goods markets?
- Why do large buyers get better prices?

Bilateral Monopoly

Bilateral Monopoly

- Exogenous conditions
- One Seller: $\quad \mathrm{MC}(\mathrm{q})$
$=$ inverse supply if price taker
- One Buyer: \quad MV(q)
$=$ inverse demand if price taker

Bilateral Monopoly

Intuitive Analysis

- Efficient quantity
- Complete information
- Maximize the surplus to be shared

Bilateral Monopoly

Intuitive Analysis

- Efficient quantity
- Complete information
- Maximize the surplus to be shared

Efficiency from the point of view of the two firms = Same quantity as a vertically integrated firm would choose

Bilateral Monopoly

Intuitive Analysis

- Problem
- But what price?
- Only restrictions
- Seller must cover his costs, $C\left(q^{*}\right)$
- Buyer must not pay more than wtp, V(q*)

\Rightarrow Any split of $\mathrm{S}^{*}=\mathrm{V}\left(\mathrm{q}^{*}\right)-\mathrm{C}\left(\mathrm{q}^{*}\right)$ seems reasonable

Bilateral Monopoly

Intuitive Analysis

- Note
- If someone demands "too much"
- The other side will reject and make a counter-offer
- Problem
- Haggling could go on forever
- Gains from trade delayed
- Thus
- Both sides have incentive to be reasonable
- But, the party with less aversion to delay has strategic advantage

Bilateral Monopoly

Definitions

- Definitions
- Efficient quantity: q^{*}
- Walrasian price: p^{w}
- Maximum bilateral surplus: S^{*}

Bilateral Monopoly

- First important insight:
- Contract must specify both price and quantity, (p, q)
- Q: Why?
- Otherwise inefficient quantity
- If $\mathrm{p}>\mathrm{p}^{\mathrm{w}}$ then $\mathrm{q}<\mathrm{q}^{*}$
- If $\mathrm{p}<\mathrm{p}^{\mathrm{w}}$ then $\mathrm{q}<\mathrm{q}^{*}$
- Short side of the market decides

Extensive Form Bargaining Ultimatum bargaining

Ultimatum bargaining

Solve this game now!

- One round of negotiations
- One party, say seller, gets to propose a contract (p, q)
- Other party, say buyer, can accept or reject
- Outcome
- If (p, q) accepted, it is implemented
- Otherwise game ends without agreement
- Payoffs
- Buyer: V(q)-p q if agreement, zero otherwise
- Seller: p q-C(q) if agreement, zero otherwise
- Perfect information
- Backwards induction

Ultimatum bargaining

- Time 2: Buyer accepts or rejects proposed contract
- Q: What would make buyer accept (p, q)?
- Buyer accepts (p, q) iff $\mathrm{V}(\mathrm{q})-\mathrm{pq} \geq 0$
- Time 1: Seller proposes best contract that would be accepted
- Q: How do we find the seller's best contract?
$-\max _{\mathrm{p}, \mathrm{q}} \mathrm{pq}-\mathrm{C}(\mathrm{q})$ such that $\mathrm{V}(\mathrm{q})-\mathrm{pq} \geq 0$

Ultimatum bargaining

Seller's maximization problem

$$
\begin{array}{ll}
\max _{p, q} & p \cdot q-C(q) \\
\text { st : } & V(q)-p \cdot q \geq 0
\end{array}
$$

Optimal price
Increase price until: $\quad p \cdot q=V(q)$
Seller takes whole surplus

Optimal quantity
$\max _{q} V(q)-C(q)$

Must set q such that: $\quad M V(q)=M C(q)$
Efficient quantity

Ultimatum bargaining

- SPE of ultimatum bargaining game
- Unique equilibrium
- There is agreement
- Efficient quantity
- Proposer takes the whole (maximal) surplus

Ultimatum bargaining

- Assume rest of lecture
- Always efficient quantity
- Surplus $=1$
- Player S gets share π_{S}
- Player B gets share $\pi_{B}=1-\pi_{S}$
- Ultimatum game
$-\pi_{\mathrm{S}}=1$
- $\pi_{\mathrm{B}}=0$

Two rounds (T=2)

Two rounds (T=2)

- Alternating offers
- Period 1
- B proposes contract
- S accepts or rejects
- Period 2 (in case S rejected)
- S proposes contract
- B accepts or rejects
- Perfect information
- No simultaneous moves
- Players know what has happened before in the game
- Solution concept
- Backwards induction (Subgame perfect equilibrium)

Two rounds (T=2)

- Player B is impatient
- €1 in period 2 is equally good as $€ \delta_{\mathrm{B}}$ in period 1
- Where $\delta_{\mathrm{B}}<1$ is B's discount factor
- Player S is impatient
- $€ 1$ in period 2 is equally good as $€ \delta_{\mathrm{S}}$ in period 1
- Where $\delta_{\mathrm{S}}<1$ is S's discount factor

Two rounds (T=2)

- Period 1

Solve this game now!

- B proposes $\left(\pi_{B}^{T-1}, \pi_{S}^{T-1}\right)$
- S accepts or rejects
- Period 2 (in case S rejected)
- S proposes $\left(\pi_{B}^{T}, \pi_{S}^{T}\right)$
- B accepts or rejects
- Perfect information => Use BI

Two rounds

- Period $\mathrm{T}=2$ (S bids) (What will happen in case S rejected?)
- B accepts iff: $\quad \pi_{B}^{T} \geq 0$
- S proposes: $\quad \pi_{B}^{T}=0 \quad \pi_{S}^{T}=1$
- Period T-1 = 1 (B bids)
- S accepts iff:

$$
\pi_{s}^{T-1} \geq \delta_{s} \pi_{s}^{T} \quad=\delta_{S}<1
$$

- B proposes: $\quad \pi_{B}^{T-1}=1-\delta_{S}>0 \quad \pi_{S}^{T-1}=\delta_{S}$
- Note
- S willing to reduce his share to get an early agreement
- Both players get part of surplus
- B's share determined by S's impatience. If S very patient $\pi_{\mathrm{S}} \approx 1$

Trounds

T rounds

- Model
- Large number of periods, T
- Buyer and seller take turns to make offer
- Common discount factor $\delta=\delta_{\mathrm{B}}=\delta_{\mathrm{S}}$
- Subgame perfect equilibrium (ie start analysis in last period)

T rounds

Time	Bidder	Π_{B}	Π_{S}	Resp.
T	S	$?$	$?$	$?$

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes

T rounds

Time	Bidder	π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$?$	$?$	$?$

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$T-1$	B	rest	δ	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$?$	$?$	$?$

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta(1-\bar{\delta})$	rest	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta(1-\delta)$	$1-\delta(1-\delta)$	yes

T rounds

Time	Bidder	π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\mathrm{\delta}(1-\delta)$	$1-\delta(1-\delta)$	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$?$	$?$	$?$

T rounds

Time	Bidder	π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	rest	$\delta\left(1-\delta+\delta^{2}\right)$	yes

T rounds

Time	Bidder	π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta\left(1-\delta+\delta^{2}\right)$	$\delta\left(1-\delta+\delta^{2}\right)$	yes

T rounds

Time	Bidder	π_{B}	Π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes
$\mathrm{T}-4$	S	$\delta\left(1-\delta+\delta^{2}-\delta^{3}\right)$	rest	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes
$\mathrm{T}-4$	S	$\delta\left(1-\delta+\delta^{2}-\delta^{3}\right)$	$1-\delta\left(1-\delta+\delta^{2}-\delta^{3}\right)$	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes
$\mathrm{T}-4$	S	$\delta-\delta^{2}+\delta^{3}-\delta^{4}$	$1-\delta+\delta^{2}-\delta^{3}+\delta^{4}$	yes

T rounds

Time	Bidder	Π_{B}	π_{S}	Resp.
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes
$\mathrm{T}-4$	S	$\delta-\delta^{2}+\delta^{3}-\delta^{4}$	$1-\delta+\delta^{2}-\delta^{3}+\delta^{4}$	yes
\ldots	\ldots	\ldots	\ldots	\ldots
1	S	$\delta-\delta^{2}+\delta^{3}-\delta^{4}+\ldots-\delta^{\mathrm{T}-1}$	$1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{\mathrm{T}-1}$	yes

T rounds

Time	Bidder	π_{B}	π_{S}	Resp
T	S	0	1	yes
$\mathrm{T}-1$	B	$1-\delta$	δ	yes
$\mathrm{T}-2$	S	$\delta-\delta^{2}$	$1-\delta+\delta^{2}$	yes
$\mathrm{T}-3$	B	$1-\delta+\delta^{2}-\delta^{3}$	$\delta-\delta^{2}+\delta^{3}$	yes
$\mathrm{T}-4$	S	$\delta-\delta^{2}+\delta^{3}-\delta^{4}$	$1-\delta+\delta^{2}-\delta^{3}+\delta^{4}$	yes
\ldots	\ldots	\ldots	\ldots	\ldots
1	S	$\delta-\delta^{2}+\delta^{3}-\delta^{4}+\ldots-\delta^{\top-1}$	$1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{\top-1}$	yes

$$
\begin{aligned}
& \pi_{B}=\delta-\delta^{2}+\delta^{3}-\delta^{4}+\ldots-\delta^{T-1} \\
& \pi_{S}=1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{T-1}
\end{aligned}
$$

T rounds

Geometric series

$$
\begin{aligned}
& \pi_{B}=\delta-\delta^{2}+\delta^{3}-\delta^{4}+\ldots-\delta^{T-1} \\
& \pi_{S}=1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{T-1}
\end{aligned}
$$

T rounds

S's share

$$
\pi_{S}=1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{T-1}
$$

T rounds

S's share

$$
\pi_{S}=1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{T-1}
$$

Multiply

$$
\delta \pi_{s}=\delta-\delta^{2}+\delta^{3}-\delta^{4}+\delta^{5}-\ldots+\delta^{T}
$$

T rounds

S's share

Add
$\pi_{S}+\delta \pi_{S}=1+\delta^{T}$

T rounds

S's share
$\pi_{s}=1-\delta+\delta^{2}-\delta^{3}+\delta^{4}-\ldots+\delta^{T-1}$

Multiply
$\delta \pi_{s}=\delta-\delta^{2}+\delta^{3}-\delta^{4}+\delta^{5}-\ldots+\delta^{T}$

Add

$$
\pi_{s}+\delta \pi_{s}=1+\delta^{T}
$$

Solve

$$
\pi_{s}=\frac{1+\delta^{T}}{1+\delta}
$$

T rounds

Equilibrium shares with T periods

$$
\begin{aligned}
& \pi_{S}=\frac{1}{1+\delta}\left(1+\delta^{T}\right) \\
& \pi_{B}=\frac{\delta}{1+\delta}\left(1-\delta^{T-1}\right)
\end{aligned}
$$

T rounds

Equilibrium shares with T periods
$\pi_{S}=\frac{1}{1+\delta}\left(1+\delta^{T}\right)$
$\pi_{B}=\frac{\delta}{1+\delta}\left(1-\delta^{T-1}\right)$

S has advantage of making last bid
$1+\delta^{T}>1-\delta^{T-1}$

To confirm this, solve model where

- B makes last bid
- S makes first bid

T rounds

Equilibrium shares with T periods
$\pi_{S}=\frac{1}{1+\delta}\left(1+\delta^{T}\right)$
$\pi_{B}=\frac{\delta}{1+\delta}\left(1-\delta^{T-1}\right)$

S has advantage of making last bid
$1+\delta^{T}>1-\delta^{T-1} \longleftarrow$ Disappears if T very large

T rounds

Equilibrium shares with $\mathrm{T} \approx \infty$ periods

$$
\begin{aligned}
& \pi_{S}=\frac{1}{1+\delta} \\
& \pi_{B}=\frac{\delta}{1+\delta}
\end{aligned}
$$

T rounds

Equilibrium shares with $\mathrm{T} \approx \infty$ periods
$\pi_{S}=\frac{1}{1+\delta}$
$\pi_{B}=\frac{\delta}{1+\delta}$
S has advantage of making first bid
$\frac{1}{1+\delta}>\frac{\delta}{1+\delta}$

To confirm this, solve model where

- B makes first bid

T rounds

Equilibrium shares with $\mathrm{T} \approx \infty$ periods
$\pi_{S}=\frac{1}{1+\delta}$
$\pi_{B}=\frac{\delta}{1+\delta}$

S has advantage of making first bid
$\frac{1}{1+\delta}>\frac{\delta}{1+\delta} \longleftarrow$ First bidder's advantage disappears if $\delta \approx 1$

T rounds

Equilibrium shares with $\mathrm{T} \approx \infty$ periods and very patient players $(\delta \approx 1)$

$$
\begin{aligned}
& \pi_{s}=\frac{1}{2} \\
& \pi_{B}=\frac{1}{2}
\end{aligned}
$$

Difference in Patience

Equilibrium shares with $\mathrm{T} \approx \infty$ periods and different discount factors

$$
\begin{aligned}
& \pi_{S}=\frac{1-\delta_{B}}{1-\delta_{S} \delta_{B}} \\
& \pi_{B}=\frac{1-\delta_{S}}{1-\delta_{S} \delta_{B}} \delta_{B}
\end{aligned}
$$

(Easy to show using same method as above)

Difference in Patience

- Recall $\delta_{i}=e^{-r_{i}}$
- $\quad r_{i}=$ continous-time discount factor
- $\Delta=$ length of time period
- Then, as $\Delta \rightarrow 0$:
$-\quad \pi_{S}=\frac{1-\delta_{B}}{1-\delta_{S} \delta_{B}} \approx \frac{r_{B}}{r_{S}+r_{B}}$
- Using l'Hopital's rule

Conclusions

- Exists unique equilibrium (SPE)
- There is agreement
- Agreement is immediate
- Efficient agreement (here: quantity)
- Split of surplus (price) determined by:
- Relative patience
- Right to make last bid gives advantage (if $\mathrm{T}<\infty$)
- Right to make first bid gives advantage (if $\delta<1$)

Implications for Bilateral Monopoly

Implications for Bilateral Monopoly

- Equal splitting

$$
\begin{aligned}
& \Pi_{S}=\Pi_{B} \\
& p \cdot q-C(q)=V(q)-p \cdot q \\
& 2 \cdot p \cdot q=V(q)+C(q) \\
& p=\frac{1}{2}\left[\frac{V(q)}{q}+\frac{C(q)}{q}\right]
\end{aligned}
$$

Implications for Bilateral Monopoly

- Equal splitting

$$
\begin{aligned}
& \Pi_{S}=\Pi_{B} \\
& p \cdot q-C(q)=V(q)-p \cdot q \\
& 2 \cdot p \cdot q=V(q)+C(q) \\
& p=\frac{1}{2}\left[\frac{V(q)}{q}+\frac{C(q)}{q}\right]
\end{aligned}
$$

Implications for Bilateral Monopoly

- Equal splitting

$$
\begin{aligned}
& \Pi_{S}=\Pi_{B} \\
& p \cdot q-C(q)=V(q)-p \cdot q \\
& 2 \cdot p \cdot q=V(q)+C(q) \quad \begin{array}{l}
\text { Manufacturer's } \\
\text { average costs }
\end{array} \\
& p=\frac{1}{2}\left[\frac{V(q)}{q}+\frac{C(q)}{q}\right]
\end{aligned}
$$

Implications for Bilateral Monopoly

- Equal splitting

$$
\begin{aligned}
& \Pi_{S}=\Pi_{B} \\
& p \cdot q-C(q)=V(q)-p \cdot q \\
& 2 \cdot p \cdot q=V(q)+C(q) \\
& p=\frac{1}{2}\left[\frac{V(q)}{q}+\frac{C(q)}{q}\right]
\end{aligned}
$$

The firms share
the Retailer's revenues and
the Manufacturer's costs equally

Nash Bargaining Solution
 -- A Reduced Form Model

Nash Bargaining Solution

- Extensive form bargaining model
- Intuitive
- But tedious
- Nash bargaining solution
- Less intuitive
- But easier to find the same outcome

Nash Bargaining Solution

- Three steps

1. Describe bargaining situation
2. Define Nash product
3. Maximize Nash product

Nash Bargaining Solution

- Step 1: Describe bargaining situation

1. Who are the two players?
2. What contracts can they agree upon?
3. What payoff would they get from every possible contract?
4. What payoff do they have before agreement?
5. What is their relative patience (= bargaining power)

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 1: Describe the bargaining situation
- Players: Manufacturer and Retailer
- Contracts: (T, q)
$T=$ total price for q units.
- Payoffs:
- Retailer:

$$
\begin{aligned}
& \pi_{R}(T, q)=V(q)-T \\
& \pi_{M}(T, q)=T-C(q)
\end{aligned}
$$

- Manufacturer:
- Payoff if there is no agreement (while negotiating)
- Retailer: $\quad \tilde{\pi}_{R}=0$
- Manufacturer: $\tilde{\pi}_{M}=0$
- Same patience => same bargaining power

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 2: Set up Nash product

$$
N(T, q)=\left[\pi_{R}(T, q)-\tilde{\pi}_{R}\right] \cdot\left[\pi_{M}(T, q)-\tilde{\pi}_{M}\right]
$$

Retailer's profit from contract
Manufacturer's profit from contract

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 2: Set up Nash product

$$
N(T, q)=\left[\pi_{R}(T, q)-\tilde{\pi}_{R}\right] \cdot\left[\pi_{M}(T, q)-\tilde{\pi}_{M}\right]
$$

Retailer's extra profit from contract
Manufacturer's extra profit from contract

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 2: Set up Nash product

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 2: Set up Nash product

$$
N(T, q)=\left[\pi_{R}(T, q)-\tilde{\pi}_{R}\right] \cdot\left[\pi_{M}(T, q)-\tilde{\pi}_{M}\right]
$$

Claim:
The contract (T, q) maximizing N is the same contract that the parties would agree upon in an extensive form bargaining game!

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Step 2: Set up Nash product

$$
\begin{aligned}
& N(T, q)=\left[\pi_{R}(T, q)-\tilde{\pi}_{R}\right] \cdot\left[\pi_{M}(T, q)-\tilde{\pi}_{M}\right] \\
& N(T, q)=[V(q)-T] \cdot[T-C(q)]
\end{aligned}
$$

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Maximize Nash product

$$
\begin{aligned}
& N(T, q)=[V(q)-T] \cdot[T-C(q)] \\
& \frac{\partial N}{\partial T}=-[T-C(q)]+[V(q)-T]=0
\end{aligned}
$$

Equal profits = Equal split of surplus

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Maximize Nash product

$$
\begin{aligned}
& N(T, q)=[V(q)-T] \cdot[T-C(q)] \\
& \frac{\partial N}{\partial T}=-[T-C(q)]+[V(q)-T]=0 \quad \Rightarrow \quad T=\frac{1}{2}[V(q)+C(q)]
\end{aligned}
$$

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Maximize Nash product

$$
\begin{aligned}
& N(T, q)=[V(q)-T] \cdot[T-C(q)] \\
& \\
& \frac{\partial N}{\partial T}=-[T-C(q)]+[V(q)-T]=0 \quad \Rightarrow \quad T=\frac{1}{2}[V(q)+C(q)] \\
& \\
&
\end{aligned} \quad \Rightarrow \quad p=\frac{1}{2}\left[\frac{V(q)}{q}+\frac{C(q)}{q}\right] .
$$

Convert to price per unit.

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Maximize Nash product

$$
\begin{aligned}
& N(T, q)=[V(q)-T] \cdot[T-C(q)] \\
& \frac{\partial N}{\partial T}=-[T-C(q)]+[V(q)-T]=0 \\
& \frac{\partial N}{\partial q}=V^{\prime}(q) \cdot[T-C(q)]-C^{\prime}(q) \cdot[V(q)-T]=0 \quad \Rightarrow \quad V^{\prime}(q)=C^{\prime}(q)
\end{aligned}
$$

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Maximize Nash product

$$
\begin{aligned}
& N(T, q)=[V(q)-T] \cdot[T-C(q)] \\
& \frac{\partial N}{\partial T}=-[T-C(q)]+[V(q)-T]=0 \\
& \frac{\partial N}{\partial q}=V^{\prime}(q) \cdot[T-C(q)]-C^{\prime}(q) \cdot[V(q)-T]=0 \quad \Rightarrow \quad V^{\prime}(q)=C^{\prime}(q)
\end{aligned}
$$

Efficiency

Nash Bargaining Solution

Example 1: Bilateral monopoly

- Conclusion
- Maximizing Nash product is easy way to find equilibrium
- Efficient quantity
- Price splits surplus equally

Nash Bargaining Solution

- With different bargaining power

$$
N(T, q)=\left[\pi_{R}(T, q)-\tilde{\pi}_{R}\right]^{\beta} \cdot\left[\pi_{M}(T, q)-\tilde{\pi}_{M}\right]^{1-\beta}
$$

Exponents determined by relative patience

