School of Business,
Economics and Law
GÖTEBORG UNIVERSITY

Oligopoly

Johan Stennek

Oligopoly

- Example: Zocord
- Reduces cholesterol
- Produced by Merck \& Co
- Patent expired in April 2003 (in Sweden)
- Other companies started to sell perfect copies
(= containing exactly the same active ingredient Simvastatin)

Examples

Price of Zocord in Sweden Nominal price per daily dose (SEK)

Oligopoly

- Question
- How does competition work?
- How strong is it?
- How does that depend on the market?
- Compare monopoly and duopoly
- Given market (technology, demand)
- Q: How does price depend on \#firms?

A duopoly model (Bertrand)

Duopoly

- Timing

1. Firms set prices simultaneously
2. Consumers decide how much to buy and from whom

NB: Firms have no time to react!

Duopoly

- Technology
- Constant marginal cost
- Firms have same marginal cost
- Demand
- Market demand: Linear (example)
- Firms' goods homogenous

Duopoly

- Consumer behavior
- All buy from cheapest firm
- If same price: 50-50 split

Duopoly
 Residual demand

Duopoly
 Residual demand

Duopoly
 Residual demand

Duopoly

Profits

$$
\pi_{i}\left(p_{1}, p_{2}\right)=\left(p_{i}-c\right) D_{i}\left(p_{1}, p_{2}\right)
$$

where

$$
D_{1}\left(p_{1}, p_{2}\right)=\left\{\begin{array}{cll}
D\left(p_{1}\right) & p_{1}<p_{2} \\
\frac{1}{2} D\left(p_{1}\right) & \text { if } & p_{1}=p_{2} \\
0 & p_{1}>p_{2}
\end{array}\right.
$$

Duopoly

Game Theory

- Inter-dependent decisions
- Firm 1's optimal price depends on firm 2's price
- Firm 2's optimal price depends on firm 1's price
- How to analyze
- Cannot simply assume profit maximizing behavior
- Game theory

Duopoly

Game Theory

- Game in normal form
- Q: Elements of a game in normal form?
- Players, Strategies, Payoffs
- Players
- Firm 1 and Firm 2
- Strategies
- Each firm chooses a price p_{i} (a real number)
- Recall: Strategy profile $=$ A price for each player $\left(p_{1}, p_{2}\right)$
- Payoffs
- Profits
- Recall: Payoff function assigns a payoff for every possible strategy profile, $\pi_{i}\left(p_{1}, p_{2}\right)$

Duopoly

Game Theory

- Nash equilibrium
- "A common understanding among all players of how they are all going to behave"
- A strategy profile such that no player can increase its payoff given that all other players follow their strategies

Duopoly

Game Theory

- Nash equilibrium in duopoly game
- A pair of prices $\left(p_{1}, p_{2}\right)$ such that
- $\pi_{1}\left(p_{1}, p_{2}\right) \geq \pi_{1}\left(p_{1}^{\prime}, p_{2}\right)$ for all p_{1}^{\prime}
- $\pi_{2}\left(p_{1}, p_{2}\right) \geq \pi_{2}\left(p_{1}, p_{2}^{\prime}\right)$ for all p_{2}^{\prime}

Duopoly
 Intuitive Analysis

- Q: Will the two firms charge p^{m} ?
- Each would sell $q^{m} / 2$
- Each would earn $\pi^{m} / 2$

Duopoly
 Intuitive Analysis

- What if a firm undercuts to $\mathrm{p}^{\mathrm{m}}-\varepsilon$?
- It would sell $\approx q^{m}$
- It would earn $\approx \pi^{m}$
- Conclusion
- Small reduction in price \rightarrow Massive expansion of sales
- p^{m} not reasonable prediction

Duopoly
 Intuitive Analysis

Duopoly
 Intuitive Analysis

Duopoly
Intuitive Analysis

- If both firms charge $p=c$
- No incentive to change behavior
- Reasonable prediction
- Nash equilibrium

Duopoly

- Two formal proofs
- For every possible outcome, investigate if someone has incentive to deviate
- Best reply analysis

Duopoly

Candidate	Profitable deviation	
$\mathrm{p}_{1}>\mathrm{p}_{2}>\mathrm{c}$	who?	what?

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon \quad\left(\max p^{m}\right)$

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm $i \quad p_{i}=p_{j}-\varepsilon \quad\left(\max p^{m}\right)$	
$p_{1}=p_{2}>c$	who?	what?

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$

Duopoly

Candidate	Profitable deviation		
$p_{1}>p_{2}>c$	Firm i	$\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{j}}-\varepsilon$	$\left(\max \mathrm{p}^{m}\right)$
$p_{1}=p_{2}>c$	Firm i	$\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{j}}-\varepsilon$	$\left(\max \mathrm{p}^{\mathrm{m}}\right)$
$p_{1}>p_{2}=c$	who?	what?	

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}>p_{2}=c$	$\left(\max p^{m}\right)$	

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}>c$	$\left(\max p^{m}\right)$	
$p_{1}>p_{2}=c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}=c$	Firm 2	$p_{2}=p_{1}-\varepsilon$

Duopoly

Candidate	Profitable deviation	
$p_{1}>p_{2}>c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}>c$	$\left(\max p^{m}\right)$	
$p_{1}>p_{2}=c$	Firm i	$p_{i}=p_{j}-\varepsilon$
$p_{1}=p_{2}=c$	Firm 2	$p_{2}=p_{1}-\varepsilon$
	$\left(\max p^{m}\right)$	

Duopoly
 Best-reply analysis

Duopoly
 Best-reply analysis

Duopoly
 Best-reply analysis

Duopoly
 Best-reply analysis

Duopoly

Best-reply analysis

Duopoly
 Best-reply analysis

Duopoly

Best-reply analysis

What if $p_{1}<c$

Duopoly
 Best-reply analysis

Duopoly
 Best-reply analysis

Duopoly

Duopoly

What is price competition?
Compare monopoly and duopoly

What is price competition?

- Prediction
- More firms \Rightarrow Lower prices
- Is this prediction true?

What is price competition?

- Extreme prediction ("Bertrand paradox")
-2 firms $=>p=c \quad \& \pi=0$
- Q: Reason for extreme prediction?
- Reduce price one cent, get all customers
- Always profitable to reduce price below competitor, as long as p > c.

What is price competition?

- More often
- More firms: $p>c \& \pi>0$
- Reason: Don't get all customers
- Examples: Product differentiation

What is price competition?

- Estimated Lerner indexes (mark-ups) in automobiles

Model	Belgium	France	Germany	Italy	UK
Fiat Uno	7.6	8.7	9.8	$\underline{21.7}$	8.7
Ford Escort	8.5	9.5	$\underline{8.9}$	8.9	11.5
Peugeot	9.9	$\underline{13.4}$	10.2	9.9	11.6
Mercedes	14.3	14.4	$\underline{17.2}$	15.6	12.3

- Conclusion
- Competition does not eliminate all markups
- Also
- $3^{\text {rd }}$ degree price discrimination also with competition
- High markups in home countries

What is price competition?

- Theoretically robust
- Many other models of oligopoly give same qualitative prediction
- Empirically "confirmed"
- Many empirical studies suggest that competition leads to lower prices

Does Competition Matter?

Sources of market power

1. Few firms \& Entry barriers
2. Product differentiation: horizontal \& vertical
3. Quantity competition/Capacity constraints
4. Cost advantage
5. Uninformed customers
6. Customer switching costs
7. Price discrimination: information \& arbitrage
8. Cartelization

Economic Methodology

- Economic model = An imaginary economy
- Include key features for issues at hand
- Remove all complications (eg competition)
- Add features sequentially (eg competition)
- Pros
- Easy to see principles
- Can do experiments (eg What is the effect of competition)
- Cons
- Not the full picture
- Are conclusions true or artifacts?

Cournot Model

(Alternative to Bertrand)

Quantity Competition

- Bertrand model
- Firms set prices
- Consumers decide quantities (firms must deliver)
- Cournot model
- Firms chose quantities
- Then price is set to clear the market
- Note 1: Difference matters (contrast to monopoly)
- Note 2: Two different interpretations

Quantity Competition

- First interpretation
- Stage 1: Firms produce: q_{1}, q_{2}
- Stage 2: Firms bring produce to auction: $p=P\left(q_{1}+q_{2}\right)$
- Example
- Fishing village
- Note
- Pricing decision is delegated
- But equilibrium price affected by amount produced
- We omit the issue why $p=P\left(q_{1}+q_{2}\right)$

Quantity Competition

- Second interpretation: Two-stage game
- Stage 1: Firms chose capacities: $\mathrm{k}_{1}, \mathrm{k}_{2}$
- Stage 2: Firms set prices: p_{1}, p_{2}
- Note:
- Under some conditions $p_{1}=p_{2}=P\left(k_{1}+k_{2}\right)$
- Then study choice of capacity (= quantity)

Duopoly

Game Theory

- Game in normal form
- Q: Elements of a game in normal form?
- Players, Strategies, Payoffs
- Players
- Firm 1 and Firm 2
- Strategies
- Each firm chooses a quantity q_{i} (a real number)
- Recall: Strategy profile =A quantity for each player $\left(q_{1}, q_{2}\right)$
- Payoffs
- Profits: $\pi_{i}\left(q_{1}, q_{2}\right)=P\left(q_{1}+q_{2}\right)=q_{i}-C\left(q_{i}\right)$
- Recall: Payoff function assigns a payoff for every possible strategy profile, $\pi_{i}\left(p_{1}, p_{2}\right)$

Exogenous conditions

- Simplify 1: Technology
- Constant marginal cost
- Firms have same marginal cost
- Simplify 2: Demand
- Firms' goods homogenous
- Market demand: Linear

Cournot Duopoly

- Technology
- Constant marginal costs, c
- Demand (linear)
- Individual demand: $\quad q=a-p$
- Number of consumers:
- Market demand:
$Q=m^{*}(a-p)$

Cournot Duopoly

- Exercise:
- Solve the model
- Steps:

1. Set up profit functions
2. Find best-reply functions
3. Find equilibrium quantities
4. Find equilibrium price

Define the game

Profit
$\pi_{1}\left(q_{1}, q_{2}\right)=P\left(q_{1}+q_{2}\right) \cdot q_{1}-C\left(q_{1}\right)$

Rewrite
$\pi_{1}\left(q_{1}, q_{2}\right)=\left(a-\frac{1}{m} \cdot\left(q_{1}+q_{2}\right)-c\right) \cdot q_{1}$

Demand
$Q(p)=m \cdot(a-p)$

Indirect demand
$p=a-\frac{1}{m} \cdot\left(q_{1}+q_{2}\right)$

Derive best-reply functions

Profit
$\pi_{1}\left(q_{1}, q_{2}\right)=P\left(q_{1}+q_{2}\right) \cdot q_{1}-C\left(q_{1}\right)$

Rewrite
$\pi_{1}\left(q_{1}, q_{2}\right)=\left(a-\frac{1}{m} \cdot\left(q_{1}+q_{2}\right)-c\right) \cdot q_{1}$

FOC
$\frac{\partial \pi_{1}\left(q_{1}, q_{2}\right)}{\partial q_{1}}=\left(a-\frac{1}{m} \cdot\left(q_{1}+q_{2}\right)-c\right)-\frac{1}{m} \cdot q_{1}=0$

Solve for best reply function
$q_{1}=\frac{m \cdot(a-c)}{2}-\frac{1}{2} \cdot q_{2}$

Derive best-reply functions

Derive best-reply functions

Compute equilibrium quantities

Compute equilibrium quantities

Equilibrium

$$
\begin{aligned}
& q_{1}=\frac{(a-c) \cdot m}{2}-\frac{1}{2} \cdot q_{2} \\
& q_{2}=\frac{(a-c) \cdot m}{2}-\frac{1}{2} \cdot q_{1}
\end{aligned}
$$

Find q_{1}^{*}

$$
q_{1}^{*}=\frac{(a-c) \cdot m}{2}-\frac{1}{2} \cdot\left(\frac{(a-c) \cdot m}{2}-\frac{1}{2} \cdot q_{1}^{*}\right)
$$

Solve for q_{1}^{*}

$$
q_{1}^{*}=\frac{(a-c) \cdot m}{3}
$$

Compute equilibrium quantities

Compute equilibrium price

Equilibrium price

$$
\begin{aligned}
& p^{*}=a-\frac{1}{m} \cdot\left(q_{1}^{*}+q_{2}^{*}\right) \\
& p^{*}=a-\frac{1}{m} \cdot\left(\frac{(a-c) \cdot m}{3}+\frac{(a-c) \cdot m}{3}\right) \\
& p^{*}=\frac{a+2 \cdot c}{3}
\end{aligned}
$$

Compare with monopoly

Question: Effect of competition on price?

$$
\begin{aligned}
& p^{*}=\frac{a+2 \cdot c}{3} \\
& p^{m}=\frac{a+c}{2}
\end{aligned}
$$

```
Conclusion:
More firms implies lower prices
```

Answer: Duopoly price lower

$$
\begin{aligned}
& p^{*}<p^{m} \\
& \frac{a+2 \cdot c}{3}<\frac{a+c}{2} \\
& c<a
\end{aligned}
$$

Compare Cournot - Bertrand

Bertrand

$$
p^{*}=c
$$

Cournot

$$
p^{*}=\frac{a+2 \cdot c}{3}>c
$$

Compare Cournot - Bertrand

- Bertrand: Cheap to steal customers
- Lower price a little \Rightarrow Steal all consumers
- Cournot: Expensive to steal customers
- To steal a lot of consumers, a firm needs to increase its production a lot \Rightarrow large reduction in equilibrium price

Compare Cournot - Bertrand

Bertrand

Compare Cournot - Bertrand

Bertrand

Cournot

Cournot Duopoly:
 Graphical Solution

Cournot Duopoly

Residual Demand

Cournot Duopoly

Best Reply

Cournot Duopoly

Best Reply

Cournot Duopoly

Best Reply

Assume firm 2 will increases production.
How will firm 1 react?

Cournot Duopoly

Best Reply

Market clearing price

If Firm 2 produces more, Firm 1 produces less

Cournot Duopoly

Best Reply

Market clearing price

Note: $\quad P\left(q_{1}+q_{2}\right)$ is reduced
Hence: $q_{1}+q_{2}$ is increased

Hence: q_{1} reduced by less than q_{2} increased

Cournot Duopoly

Best Reply

Market clearing price

Cournot Duopoly

Best Reply

Market clearing
price

Cournot Duopoly

Best Reply

Cournot Duopoly

Equilibrium

