

School of Business, Economics and Law GÖTEBORG UNIVERSITY

Oligopoly

Johan Stennek

Oligopoly

- Example: Zocord
 - Reduces cholesterol
 - Produced by Merck & Co
 - Patent expired in April 2003 (in Sweden)
 - Other companies started to sell perfect copies
 - (= containing exactly the same active ingredient Simvastatin)

Examples

Oligopoly

- Question
 - How does competition work?
 - How strong is it?
 - How does that depend on the market?
- Compare monopoly and duopoly
 - Given market (technology, demand)
 - Q: How does price depend on #firms?

A duopoly model (Bertrand)

• Timing

- 1. Firms set prices simultaneously
- 2. Consumers decide how much to buy and from whom

NB: Firms have no time to react!

• Technology

- Constant marginal cost
- Firms have same marginal cost

• Demand

- Market demand: Linear (example)
- Firms' goods homogenous

- Consumer behavior
 - All buy from cheapest firm
 - If same price: 50-50 split

Duopoly Residual demand

Duopoly Residual demand

Duopoly Residual demand

Profits

$$\pi_i(p_1,p_2) = (p_i - c)D_i(p_1,p_2)$$

where

$$D_{1}(p_{1},p_{2}) = \begin{cases} D(p_{1}) & p_{1} < p_{2} \\ \frac{1}{2}D(p_{1}) & if \quad p_{1} = p_{2} \\ 0 & p_{1} > p_{2} \end{cases}$$

- Inter-dependent decisions
 - Firm 1's optimal price depends on firm 2's price
 - Firm 2's optimal price depends on firm 1's price
- How to analyze
 - Cannot simply assume profit maximizing behavior
 - Game theory

Duopoly Game Theory

- Game in normal form
 - <u>Q</u>: Elements of a game in normal form?
 - Players, Strategies, Payoffs
 - Players
 - Firm 1 and Firm 2
 - Strategies
 - Each firm chooses a price p_i (a real number)
 - Recall: Strategy profile = A price for each player (p₁, p₂)
 - Payoffs
 - Profits
 - Recall: Payoff function assigns a payoff for every possible strategy profile, $\pi_i(p_1, p_2)$

- Nash equilibrium
 - "A common understanding among all players of how they are all going to behave"
 - A strategy profile such that no player can increase its payoff given that all other players follow their strategies

Duopoly Game Theory

- Nash equilibrium in duopoly game
 - A pair of prices (p_1, p_2) such that
 - $\pi_1(p_1, p_2) \ge \pi_1(p'_1, p_2)$ for all p'_1
 - $\pi_2(p_1, p_2) \ge \pi_2(p_1, p'_2)$ for all p'_2

Duopoly Intuitive Analysis

- <u>Q</u>: Will the two firms charge p^m?
 - Each would sell $q^m/2$
 - Each would earn $\pi^m/2$

Duopoly Intuitive Analysis

- What if a firm undercuts to $p^m \epsilon$?
 - It would sell $\approx q^m$
 - It would earn $\approx \pi^m$
- Conclusion
 - Small reduction in price →
 Massive expansion of sales
 - p^m not reasonable prediction

- If both firms charge p = c
 - No incentive to change behavior
 - Reasonable prediction
 - Nash equilibrium

- Two formal proofs
 - For every possible outcome, investigate if someone has incentive to deviate
 - Best reply analysis

Candidate	Profitable deviation	
p ₁ > p ₂ > c	who?	what?

Candidate	Profitable deviation	
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)

Candidate	Profitable deviation	
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	who?	what?

Candidate	Profitable deviation	
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)

Candidate	Profitable deviation	
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ > p ₂ = c	who?	what?

Candidate	Profital	ble deviation
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ > p ₂ = c	Firm 2	$p_2 = p_1 - \epsilon \pmod{max p^m}$

Candidate	Profitable deviation	
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ > p ₂ = c	Firm 2	$p_2 = p_1 - \epsilon \pmod{max p^m}$
$p_1 = p_2 = c$	who?	what?

Candidate	Profital	ble deviation
p ₁ > p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ = p ₂ > c	Firm i	$p_i = p_j - \epsilon$ (max p^m)
p ₁ > p ₂ = c	Firm 2	$p_2 = p_1 - \epsilon \pmod{max p^m}$
$p_1 = p_2 = c$	-	-

37

40

43

Duopoly

44

Duopoly

What is price competition? Compare monopoly and duopoly

- Prediction
 - More firms → Lower prices
- Is this prediction true?

• Extreme prediction ("Bertrand paradox")

 $-2 \text{ firms} => p = c \& \pi = 0$

- <u>Q</u>: Reason for extreme prediction?
 - Reduce price one cent, get all customers
 - Always profitable to reduce price below competitor, as long as p > c.

- More often
 - More firms: $p > c \& \pi > 0$
 - Reason: Don't get all customers
 - Examples: Product differentiation

• Estimated Lerner indexes (mark-ups) in automobiles

Model	Belgium	France	Germany	Italy	UK
Fiat Uno	7.6	8.7	9.8	<u>21.7</u>	8.7
Ford Escort	8.5	9.5	<u>8.9</u>	8.9	11.5
Peugeot	9.9	<u>13.4</u>	10.2	9.9	11.6
Mercedes	14.3	14.4	<u>17.2</u>	15.6	12.3

• Conclusion

- Competition does not eliminate all markups
- Also
 - 3rd degree price discrimination also with competition
 - High markups in home countries

- Theoretically robust
 - Many other models of oligopoly give same qualitative prediction
- Empirically "confirmed"
 - Many empirical studies suggest that competition leads to lower prices

Does Competition Matter?

Sources of market power

- 1. Few firms & Entry barriers
- 2. Product differentiation: horizontal & vertical
- 3. Quantity competition/Capacity constraints
- 4. Cost advantage
- 5. Uninformed customers
- 6. Customer switching costs
- 7. Price discrimination: information & arbitrage
- 8. Cartelization

Economic Methodology

- Economic model = An imaginary economy
 - Include key features for issues at hand
 - Remove all complications (eg competition)
 - Add features sequentially (eg competition)
- Pros
 - Easy to see principles
 - Can do experiments (eg What is the effect of competition)
- Cons
 - Not the full picture
 - Are conclusions true or artifacts?

Cournot Model (Alternative to Bertrand)

Quantity Competition

- Bertrand model
 - Firms set prices
 - Consumers decide quantities (firms must deliver)
- Cournot model
 - Firms chose quantities
 - Then price is set to clear the market
- Note 1: Difference matters (contrast to monopoly)
- Note 2: Two different interpretations

Quantity Competition

- First interpretation
 - Stage 1: Firms produce: q₁, q₂
 - Stage 2: Firms bring produce to auction: $p = P(q_1+q_2)$
- Example
 - Fishing village
- Note
 - Pricing decision is delegated
 - But equilibrium price affected by amount produced
 - We omit the issue why $p = P(q_1+q_2)$

Quantity Competition

- Second interpretation: Two-stage game
 - Stage 1: Firms chose capacities: k₁, k₂
 - Stage 2: Firms set prices: p₁, p₂
- Note:
 - Under some conditions $p_1 = p_2 = P(k_1 + k_2)$
 - Then study choice of capacity (= quantity)

Duopoly Game Theory

- Game in normal form
 - <u>Q</u>: Elements of a game in normal form?
 - Players, Strategies, Payoffs
 - Players
 - Firm 1 and Firm 2
 - Strategies
 - Each firm chooses a quantity q_i (a real number)
 - Recall: Strategy profile = A quantity for each player (q₁, q₂)
 - Payoffs
 - Profits: $\pi_i(q_1, q_2) = P(q_1 + q_2) \cdot q_i C(q_i)$
 - Recall: Payoff function assigns a payoff for every possible strategy profile, $\pi_i(p_1, p_2)$

Exogenous conditions

- Simplify 1: Technology
 - Constant marginal cost
 - Firms have same marginal cost
- Simplify 2: Demand
 - Firms' goods homogenous
 - Market demand: Linear

Cournot Duopoly

Technology

Constant marginal costs, c

• Demand (linear)

- Individual demand: q = a p
- Number of consumers:
- Market demand:

m

$$Q = m^*(a - p)$$

Cournot Duopoly

• Exercise:

Solve the model

• Steps:

- 1. Set up profit functions
- 2. Find best-reply functions
- 3. Find equilibrium quantities
- 4. Find equilibrium price

Define the game

Profit $\pi_1(q_1, q_2) = P(q_1 + q_2) \cdot q_1 - C(q_1)$

Rewrite

 $\pi_1(q_1,q_2) = (a - \frac{1}{m} \cdot (q_1 + q_2) - c) \cdot q_1$

Demand $Q(p) = m \cdot (a - p)$

Indirect demand $p = a - \frac{1}{m} \cdot (q_1 + q_2)$

Derive best-reply functions

Profit

 $\pi_1(q_1,q_2) = P(q_1+q_2) \cdot q_1 - C(q_1)$

Rewrite

$$\pi_1(q_1,q_2) = (a - \frac{1}{m} \cdot (q_1 + q_2) - c) \cdot q_1$$

FOC

$$\frac{\partial \pi_1(q_1,q_2)}{\partial q_1} = \left(a - \frac{1}{m} \cdot \left(q_1 + q_2\right) - c\right) - \frac{1}{m} \cdot q_1 = 0$$

Solve for best reply function

$$q_1 = \frac{m \cdot (a-c)}{2} - \frac{1}{2} \cdot q_2$$

Derive best-reply functions

Derive best-reply functions

Compute equilibrium quantities

Compute equilibrium quantities

Equilibrium

$$q_1 = \frac{(a-c) \cdot m}{2} - \frac{1}{2} \cdot q_2$$
$$q_2 = \frac{(a-c) \cdot m}{2} - \frac{1}{2} \cdot q_1$$

Find q_1^*

$$q_{1}^{*} = \frac{(a-c) \cdot m}{2} - \frac{1}{2} \cdot \left(\frac{(a-c) \cdot m}{2} - \frac{1}{2} \cdot q_{1}^{*}\right)$$

Solve for q_1^*

$$q_1^* = \frac{(a-c) \cdot m}{3}$$

Compute equilibrium quantities

69

Compute equilibrium price

Equilibrium price

$$p^* = a - \frac{1}{m} \cdot \left(q_1^* + q_2^*\right)$$
$$p^* = a - \frac{1}{m} \cdot \left(\frac{(a-c) \cdot m}{3} + \frac{(a-c) \cdot m}{3}\right)$$
$$p^* = \frac{a+2 \cdot c}{3}$$

Compare with monopoly

Question: Effect of competition on price?

$$p^* = \frac{a+2\cdot c}{3}$$
$$p^m = \frac{a+c}{2}$$

Conclusion: More firms implies lower prices

Answer: Duopoly price lower

$$\frac{p^* < p^m}{\frac{a+2 \cdot c}{3} < \frac{a+c}{2}}$$

c < a

Compare Cournot - Bertrand

Bertrand

 $p^* = c$

Cournot

$$p^* = \frac{a + 2 \cdot c}{3} > c$$
Compare Cournot - Bertrand

- Bertrand: Cheap to steal customers
 - Lower price a little \Rightarrow Steal all consumers
- Cournot: Expensive to steal customers
 - To steal a lot of consumers, a firm needs to increase its production a lot ⇒ large reduction in equilibrium price

Compare Cournot - Bertrand

Bertrand

Compare Cournot - Bertrand

Bertrand

Cournot

Cournot Duopoly: Graphical Solution

81

Assume firm 2 will increases production. How will firm 1 react?

Cournot Duopoly Equilibrium

