

School of Business, Economics and Law GÖTEBORG UNIVERSITY

### Monopoly

Johan Stennek

# Monopoly

- <u>Q</u>: Examples of monopoly?
  - SJ on the route Stockholm Linköping?
  - Pharmaceutical companies with patent?
  - District heating?
  - Hemnet?

# Monopoly

- <u>Q</u>: How do you define monopoly?
- Definition supply side
  - One firm producing the product
  - No close substitutes
  - Barriers to entry
- Definition demand side
  - Many "small" buyers (consumers, small firms)
- Implication: Firm can set price without thinking about
  - Other firms (existing or not)
  - Individual consumers

Same reason: Barriers to entry

### Barriers to entry

- <u>Q</u>: Examples of entry barriers?
- Legal
  - Patents to protect R&D: pharmaceuticals (substitutes?)
  - Copy rights: Books (substitutes?)
  - Consumption control: liquor
  - Fiscal: gambling
- Economies of scale / market size
  - District heating in cities
  - Food retailing in rural areas
  - Telecom networks
- Exclusive access to essential resource
  - Natural resource
  - Exclusive distribution agreement
- Network effects
  - Hemnet

## **Q**: Why study monopoly?

• Still some important monopolies

– Pharmaceuticals, district heating, ...

- Policy evaluations
  - competition policy: ban on exclusion + merger control
  - press subsidies
  - deregulation
- Preparation for studying competing firms

- Pharmaceuticals
  - Huge costs for R&D
  - Patents for 20 years => Monopoly
- Striking stylized fact
  - Prices for the same drug differ hugely between countries

#### • Lipitor

- Reduces cholesterol
- Manufacturer prices per dosage in 1998 (10 mg tablets)
  - US: \$ 1.46
  - Sweden: \$ 0.94
- Losec
  - Ulcer treatment
  - Manufacturer prices per dosage in 1998 (20 mg tablets)
    - US: \$ 2.99
    - Sweden: \$ 1.74

Average percentage deviation from European mean prices for 90

pharmaceutical products in 1998

| Country        | Deviation |
|----------------|-----------|
| Greece         | -28       |
| Spain          | -20       |
| Portugal       | -13       |
| Italy          | -13       |
| France         | -10       |
| Finland        | -2        |
| Austria        | -2        |
| Norway         | -1        |
| Sweden         | -1        |
| Belgium        | -1        |
| Netherlands    | +2        |
| Denmark        | +3        |
| Germany        | +11       |
| United Kingdom | +19       |
| Switzerland    | +25       |

#### • Questions

- Why are prices for the same good different in different geographical markets?
- Why do prices differ from costs (= similar in all countries)?
- Is this pattern good or bad?

## The monopoly model

#### • Behavioral assumption

- Firm wants to maximize profits

- Choice
  - Price
  - Quantity
- Exogenous conditions
  - Demand function [P(q) or Q(p)]
  - Cost function [C(q)]









- Demand constrains the monopolists behavior
  - Trade-off between margin and sales
  - Need to strike a balance
- Now let's try to find this balance
  - Profit = Revenues Cost
  - Need to study how revenues depend on sales

#### How do revenues depend on sales?



























#### Povonues The more I sell, the more costly it is R=pq MR q р to lower price by €1 \_ => MR is falling (normally) -4 +5 q

4 5










### Revenues



## Monopolist's choice of quantity

• Exercise: Set up monopoly problem and solve for optimal quantity!

– Cost function: C(q)

– Inverse demand: P(q)

Profit

 $\pi(q) = P(q) \cdot q - C(q)$ 

#### Profit

 $\pi(q) = P(q) \cdot q - C(q)$ 

#### First order condition

 $\pi_q(q) = P(q) + P_q(q) \cdot q - C_q(q) = 0$ 

#### Profit

 $\pi(q) = P(q) \cdot q - C(q)$ 

#### First order condition

 $\pi_q(q) = P(q) + P_q(q) \cdot q - C_q(q) = 0$ 

#### Rewrite

 $P(q) + P_q(q) \cdot q = C_q(q)$ 

Interpretation?



# Monopoly

#### • Definition

 A firm has *market power* if it can set a price above marginal cost, without losing all sales

First order condition

 $\pi_q(q) = P(q) + P_q(q) \cdot q - C_q(q) = 0$ 

#### Second order condition

$$\pi_{qq}(q) = 2 \cdot P_q(q) + P_{qq}(q) \cdot q - C_{qq}(q) < 0$$

Example:

Marginal cost constant or increasing  $\Leftrightarrow C_{qq} \ge 0$ 

Demand linear or concave  $\Leftrightarrow P_{qq} \leq 0$ 

• Exercise: Set up monopoly problem and solve for optimal quantity and price!

– Constant unit cost: c

- Linear inverse demand:  $p = a - b \cdot q$ 

(No need to check 2<sup>nd</sup> order condition)

#### Profit



### 1. Cost





- Conclusion: Price is increasing in cost
  - Marginal cost (but not fixed cost)
  - Pass through = 1/2 (but only in linear case)
  - In general: pass through 0  $\infty$
  - By symmetry
    - If cost reduced, firms reduce price
    - but not necessarily by same amount

#### • Questions

– So, don't fixed costs matter at all for prices?

#### • Answer

- Short term: No!
  - Only marginal cost.
- Long run: Yes!
  - If average costs are not covered => exit => less competition => higher prices

### Formal analysis

Profit

 $\pi(q) = (P(q) - c) \cdot q$ 

First order condition

 $\pi_q(q) = (P(q) - c) + P_q(q) \cdot q = 0$ 

Rewrite  $P(q) + P_q(q) \cdot q = c$ 

Differentiate to study effect of change in cost  $2 \cdot P_q(q) \cdot dq + P_{qq}(q) \cdot q \cdot dq = dc$ 

Rewrite

$$\frac{dq}{dc} = \frac{1}{2 \cdot P_q(q) + P_{qq}(q) \cdot q} < 0$$

(Second order condition for maximization)

# 2. Demand











# Welfare & Efficiency

# Welfare

- <u>Q</u>: How much welfare is created in a market?
  - Firm owners?

= profit

- Consumers?
  - = consumer's surplus (Q: define CS)

consumer's surplus = WTP – p

- Employees?

= no gain if w = cost of working (which is assumed)





#### Monopoly Welfare





- Is it possible to increase welfare in this market?
  - <u>Q</u>: Define Pareto efficiency
    - Allocation is in-efficient if it is possible to improve situation for one agent without making it worse for somebody else
  - <u>Q</u>: Define Compensation principle
    - Allocation is in-efficient if it can be changed in such a way that those who gain could compensate those who lose
    - Akin to "Total Surplus"

- Q: Is it possible to increase welfare in this market?
  - Pareto efficiency
  - Compensation principle







- Q: Other inefficiencies caused by monopoly?
  - Dead weight loss
  - Cost: Can pass on cost increases to consumers
  - Rent-seeking: Monopoly profit worth lobbying for
  - Other
    - Choice of quality
    - Investment

•

### **Price setting**

#### Same question as before – slightly different analysis Derive convenient formula
Previously

 $\max_{q} \pi(q) = P(q) \cdot q - C(q)$ 

• Q: How do we rewrite as decision over p?  $\pi(p) = p \cdot D(p) - C(D(p))$ 

Here we use the demand function D(p)not the indirect demand function P(q)

Composite function: C(D(p))

#### Profit

 $\pi(p) = p \cdot D(p) - C(D(p))$ 

Q: First order condition?

#### Profit

 $\pi(p) = (p - c)D(p)$ 

First order condition



#### Profit

 $\pi(p) \!=\! (p \!-\! c) D(p)$ 

#### First order condition

$$\pi_p(p) = D(p) + p \cdot D_p(p) - C_q(D(p)) \cdot D_p(p) = 0$$

Factor out 
$$D_p(p)$$
  
 $\pi_p(p) = D(p) + [p - C_q(D(p))] \cdot D_p(p) = 0$ 

#### Profit

 $\pi(p) = (p - c)D(p)$ 

#### First order condition

$$\pi_{p}(p) = D(p) + p \cdot D_{p}(p) - C_{q}(D(p)) \cdot D_{p}(p) = 0$$

Factor out 
$$D_p(p)$$
  
 $\pi_p(p) = D(p) + \left[ p - C_q(D(p)) \right] \cdot D_p(p) = 0$ 

Rewrite

$$\frac{p - C_q}{p} = -\frac{D(p)}{p \cdot D_p(p)}$$



Rewrite

$$\frac{p - C_q}{p} = -\frac{D(p)}{p \cdot D_p(p)}$$

Elasticity of demand  $\eta(p) \equiv \frac{p \cdot D_p(p)}{D(p)}$ 

Market power (Lerner index)  $L = \frac{p - MC}{p}$ 

#### Rewrite

$$\frac{p - C_q}{p} = -\frac{D(p)}{p \cdot D_p(p)}$$

Interpretation

$$L = -\frac{1}{\eta(p)}$$

Inverse elasticity rule

Monopolist's market power determined by consumers' price sensitivity

Elasticity of demand p D(n)

#### Caution

L =

This expression "hides" the fact that the level of demand also matters

p

- Conclusion: Price depends on demand
  - High demand  $\Leftrightarrow$  high WTP  $\Rightarrow$  high price (typically)
  - Low price sensitivity  $\Rightarrow$  High price (typically)
- 3<sup>rd</sup> degree price discrimination
  - Recall pharmaceutical market
    - Low prices in Greece, Spain, Portugal
    - High prices in Switzerland, Germany, UK
  - Definition of P.D:
    - Charge different price for same product to different consumers

- Q: Under what conditions can firms charge different prices from different consumers based on WTP?
  - Information about WTP
  - No arbitrage (but internal market)

- Q: Is it a good or a bad thing that prices of pharmaceuticals is lower in Greece than in Sweden?
  - Bad: Inefficient distribution of given amount of goods
  - Good: If price discrimination illegal, firms may set
    high price, and not sell in poor countries

But: Even better if  $p_{Greece} = p_{Switzerland} = mc$ 

- What if firm must earn p > c to finance R&D.
  Are price differences then good or bad?
  - Good: It may be <u>fair</u> that countries with low income pays less
  - Good: To minimize <u>total global welfare</u> loss, charge high price in country with low price sensitivity (Ramsey pricing)

- Q: Current regulation
  - Competition law
    - Abuse of dominant position
    - Dominant firms may not "impose unfair prices"
    - Never used
  - Sector specific regulation
    - Rental apartments
    - Telecom; District heating (has been discussed)
    - On-patent medicines; Pharmacies
  - Rationing and price regulation during crisis
    - If Sweden cut off from imports (food, oil, ...)
    - Removed?

- Q: Why so little price regulation?
- Q: Problems with price regulation?
  - 1. P = MC may not work when there are fixed costs
  - 2. Information
  - 3. Incentives for innovation
  - 4. Regulatory uncertainty
  - 5. Administrative costs

- Fixed costs
  - DWL overestimates potential gain from regulation
  - P > MC to finance fixed costs
  - Alternative: subsidize & use taxes  $\Rightarrow$  DWL moved

- Q: What information would regulator need?
  - If no fixed costs only MC
  - Otherwise
    - Cost function
    - Demand function

- Incentives for innovation
  - Monopoly: High WTP  $\Rightarrow$  high price
  - Firms incentives to invent new products that people are willing to pay for

- Regulatory uncertainty
  - 2013 Swedish Market Court decided a case about what prices TeliaSonera was allowed to charge for broadband services in 2000

- Administrative costs
  - Example: TeliaSonera's external legal advice at least €1mn

Case study: Value-Based Pricing of Medicines

- Dilemma
  - Efficient use of existing medicines
    - p = MC
  - Incentives to develop new medicines
    - Huge fixed costs  $\Rightarrow$  p > MC
    - Efficient incentives ⇒ p must be related to WTP

- Solution: Patents  $\Rightarrow$  p > MC
  - Pros: Investment incentives
  - Cons: Large DWL, since
    - WTP high
    - MC low
- Solution 2: Subsidize medicines
  - Average subsidy in Sweden 80%
  - People will consume despite high price!

- Exercise: Compute monopoly price
  - Demand:  $q = v p^{Consumer}$
  - Cost:  $C = c \cdot q$
  - Subsidy:  $p^{Consumer} = \lambda \cdot p^{Producer}$ ,
- Exercise: Compare
  - No subsidy  $\lambda$  = 1 and  $\lambda$  = 0.2
  - Assume: v = 10; c = 1

Monopoly solution

$$\pi = (p^{P} - c) \cdot (v - \lambda \cdot p^{P})$$
$$\frac{\partial \pi}{\partial p^{P}} = (v - \lambda \cdot p^{P}) - \lambda \cdot (p^{P} - c) = 0$$

$$p^{P} = \frac{\frac{v}{\lambda} + c}{2} \qquad p^{C} = \frac{v + \lambda \cdot c}{2} \qquad q = v - \frac{v + \lambda \cdot c}{2} = \frac{v - \lambda \cdot c}{2}$$

- Comparison
  - $p^{P} = \frac{10+1}{2} = 5.5 \qquad p^{C} = \frac{10+1}{2} = 5.5 \qquad q = \frac{10-1}{2} = 4.5$  $p^{P} = \frac{\frac{10}{2}+1}{2} = 25.5 \qquad p^{C} = \frac{10+0.2\cdot 1}{2} = 5.1 \qquad q = \frac{10-0.2\cdot 1}{2} = 4.8$

- Subsidy + Monopoly pricing
  - Subsidy turned into gift to firms
  - Little effect on DWL
  - Little insurance to citizens



- Solution: VBP (= form of price regulation)
  - Company apply to be included in the subsidy
  - Tandvårds- och Läkemedelsförmånsverket (TLV)

- Company provides information about value of drug
  - People with different deceases
  - People with different side-effects

- Company provides information about value of drug
  - People with different diseases
  - People with different side-effects



- Note 1
  - Value is for average individual
    (Income differences are assumed away)

#### • Note 2

- Companies must undertake substantial research to prove value
  - Medical effects
  - Economic value of medical effects

#### • Price

- Company sets price
- TLV decides which users get the drug subsidized




## VBP

- Conclusion
  - Value-based pricing = normal "monopoly" pricing
  - But the firm cannot "steal" the subsidy
- Motivation
  - P = "social value of drug" gives firms incentives to develop drugs creating value