Static Games

Johan Stennek

Interdependent decisions

- Food retailing
- ICA:s optimal price depends on Coop:s price
- Coop: optimal price depends on ICA:s price
- How analyze?

Interdependent decisions

- Theory of interdependent decision making (a.k.a Game Theory)
- How should we expect people to behave when the outcome depends on several persons actions?

Prisoners' Dilemma

Prisoners' Dilemma

- Police arrest two suspects
- Enough evidence for short conviction (1 month)
- More evidence needed for long conviction (10 months)
- Can the prisoners be made to confess?
- Prosecutor asks prisoners independently to "rat" = provide information
- Offering a rebate on the sentence

Prisoners' Dilemma

- Sentences after rebates:
- If both "clam"
- both get 1 month
- If one person "rats"
- the betrayer goes free
- the other gets 10 months
- If both "rat"
- both get 4 months

Prisoners' Dilemma

- Prisoners put in separate cells
- Simultaneous decisions

Prisoners' Dilemma

An outcome matrix summarizes the game:

If prisoner 1 rats and prisoner 2 clams:

- Prisoner 1 goes free
- Prisoner 2 gets 10 months

Prisoners' Dilemma

An outcome matrix summarizes the game:

		Prisoner 2	
		Clam	Rat
Prisoner 1	Clam	1,1	10,0
	Rat	0,10	4,4

Complete information

- Both prisoners know all facts

Q: Assume you are prisoner 1

- What would you do?

Prisoners' Dilemma

An outcome matrix summarizes the game:

		Prisoner 2	
		Rat	
Prisoner 1	Clam	1,1	10,0
	Rat	0,10	4,4

If you only care for the other:

If you are selfish:

- Clam!
- Rat!

Prisoners' Dilemma

An outcome matrix summarizes the game:

		Prisoner 2	
		Clam	Rat
Prisoner 1	Clam	1,1	10,0
	Rat	0,10	4,4

We need to know people's preferences to predict how they will behave!

Prisoners’ Dilemma 1

- Alternative representation
- Utility = 10 - \#months
- Payoff matrix

	Clam	Rat
Clam	9,9	0,10
Rat	10,0	6,6

Convention

- Player 1 is row player

Complete information

- Both prisoners know all facts

Prisoners’ Dilemma 1

Prisoners’ Dilemma 1

- Assume they agreed to clam
- Will they honor the agreement?

Prisoners’ Dilemma 1

- Best-reply function
- Simple procedure to predict behavior

Prisoners’ Dilemma 1

- Player 1
- Q: what is player 1's best choice if 2 would clam?
- A: to rat

	Clam	Rat
Clam	9,9	0,10
Rat	$\underline{10,0}$	6,6

Best reply

= utility maximizing choice for a given behavior by the other

Prisoners’ Dilemma 1

- Player 1
- Q: what is player 1 ' s best choice if 2 would rat?
- A: to rat

	Clam	Rat
Clam	9,9	0,10
Rat	$\underline{10}, 0$	$\underline{6}, 6$

Best reply

= utility maximizing choice for a given behavior by the other

Prisoners' Dilemma 1

- Player 1:s best reply function
- IF player 2 clams, THEN player 1:s best reply is to rat
- IF player 2 rats, THEN player 1:s best reply is to rat

	Clam	Rat
Clam	9,9	0,10
Rat	$\underline{10}, 0$	$\underline{6}, 6$

Best reply

= utility maximizing choice for a given behavior by the other

Best reply function

= rule assigning best choice for every possible behavior by the other

Prisoners’ Dilemma 1

- Here player 1's best-reply function says
- Rat, independent of what the other player does

Notice: Rat is a strictly dominating strategy.

Definition: A strategy is strictly dominating if

- it is strictly better than all other strategies,
- independent of what other people do.

Notice: Very rare

Prisoners’ Dilemma 1

- Here player 1's best-reply function says
- Rat, independent of what the other player does

Notice: Clam is a strictly dominated strategy.

One should never play a strictly dominated strategy ly

Notice: Quite common.

Prisoners’ Dilemma 1

- Player 2
- Q: what is player 2' s best choice if 1 would clam?
- A: to rat

	Clam	Rat
Clam	9,9	0,10
Rat	10,0	6,6

Prisoners’ Dilemma 1

- Player 2
- Q: what is player 2 ' s best choice if 1 would rat?
- A: to rat

	Clam	Rat
Clam	9,9	$0, \underline{10}$
Rat	10,0	$6, \underline{6}$

Prisoners' Dilemma 1

- Player 2:s best reply function
- IF player 1 clams, THEN player 2:s best reply is to rat
- IF player 1 rats, THEN player 2:s best reply is to rat

	Clam	Rat
Clam	9,9	$0, \underline{10}$
Rat	10,0	$6, \underline{6}$

Prisoners’ Dilemma 1

- Here player 2's best-reply function says
- Rat, independent of what the other player does
- Conclusion
- Both will rat

Prisoners' Dilemma 1

- Important insights

1. Conflict: Private incentives vs. Efficiency

- Rational choice may lead to bad outcomes

2. Agreements beforehand do not matter, if players don' t have incentives to follow agreement
3. Sometimes exist dominant strategies

Prisoners' Dilemma 2

Prisoners’ Dilemma 2

- Player 1 is a "moral person" (or altruist)
- Utility = 20 - $£ \# m o n t h s$
- Outcome matrix (months)

	Clam	Rat
Clam	1,1	10,0
Rat	0,10	4,4

- Payoff matrix

	Clam	Rat
Clam	18,9	10,10
Rat	10,0	12,6

Prisoners’ Dilemma 2

	Clam	Rat
Clam	18,9	10,10
Rat	10,0	12,6

Q: Does player 1 have strictly dominated strategy?

Prisoners’ Dilemma 2

	Clam	Rat
Clam	$\underline{18}, 9$	10,10
Rat	10,0	$\underline{12}, 6$

Q: Does player 1 have strictly dominated strategy?

A: No

- Better to clam if 2 clams
- Better to rat if 2 rats

Prisoners’ Dilemma 2

	Clam	Rat
Clam	$\underline{18}, 9$	10,10
Rat	10,0	$\underline{12}, 6$

Q: What should player 1 do?

Prisoners’ Dilemma 2

	Clam	Rat
Clam	$\underline{18}, 9$	$10, \underline{10}$
Rat	10,0	$\underline{12}, \underline{6}$

A:

- Player 1 knows that player 2 will rat!
- Then better for 1 to also rat!

Prisoners’ Dilemma 2

	Clam	Rat
Clam	$\underline{18}, 9$	$10, \underline{10}$
Rat	10,0	$\underline{12}, \underline{6}$

Important insight

In a strategic situation, people need to put themselves into other peoples shoes

Prisoners' Dilemma 2

	Clam	Rat
Clam	$\underline{18}, 9$	$10, \underline{10}$
Rat	10,0	$\underline{12}, \underline{6}$

Notice: if (rat, rat) would be played

- Player 1 plays a best reply against player 2's behavior
- Player 2 plays a best reply against player 1's behavior

Prisoners’ Dilemma 2

We say (rat, rat) is an equilibrium

Player 1 maximizes utility, given player 2's behavior Player 2 maximizes utility, given player 1's behavior

Prisoners’ Dilemma 2

- \underline{Q} : Is any other outcome an equilibrium?
- A: No!
- E.g.: (clam, rat) => player 1 has incentive to change behavior

	Clam	Rat
Clam	9,9	$0, \underline{10}$
Rat	$\underline{10}, 0$	$\underline{4}, \underline{4}$

Games in normal form

Normal Form

- Game in normal form
- Players
- Strategies
- Payoffs (for all possible combinations of strategies)
- Prisoners Dilemma
- Players: Prisoner 1, Prisoner 2
- Strategies: rat, clam
- Payoffs: u_{1} (clam, rat) $=10$, and so on.

Normal Form

- Payoff matrix
- Summarizes normal form (of 2-person game)
- Interpretation
- Players choose simultaneously
- Players know the game

Prisoners' Dilemma

- Definition: Strategy profile
- A list of strategies, one for each player
- Example (Prisoners’ Dilemma)
- (rat, rat), (rat, clam), (clam, rat), (clam, clam)

Prisoners' Dilemma

- Definition: Nash equilibrium
-A strategy profile such that
i. each player maximizes his utility,
ii. given that all other players follow their strategies

Nash Equilibrium

- Formal definition for two-player game

Strategy profile $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a Nash Equilibrium if :
$u_{1}\left(s_{1}^{*}, s_{2}^{*}\right) \geq u_{1}\left(s_{1}, s_{2}^{*}\right)$ for all s_{1} in S_{1}
$u_{2}\left(s_{1}^{*}, s_{2}^{*}\right) \geq u_{2}\left(s_{1}^{*}, s_{2}\right)$ for all s_{2} in S_{2}

Prisoners' Dilemma

- Why should we expect people to follow equilibrium?
- Equilibrium behavior is by no means guaranteed,
- but...

Prisoners' Dilemma

- Assume

1. All people are rational
(= they maximize their utilities, given their expectations of what other people will do)
2. All people know what will happen, before they make their choices

- Then
- People must behave according to an equilibrium

Prisoners' Dilemma

- Argument: Assume the opposite
- All people rational \& All people know what will happen
- Their behavior is not a NE (ex: Clam, Clam)
- Then
- Then at least one person is supposed not to play best reply
- Then at least this person will deviate from the prediction, since he is rational
- Then, after all, people didn't know what was going to happen

Nash Equilibrium

- Formally

Rationality
$u_{1}\left(s_{1}^{*}, E_{1} s_{2}\right) \geq u_{1}\left(s_{1}, E_{1} s_{2}\right)$ for all s_{1} in S_{1}

Nash Equilibrium

- Formally

> Rationality
> $u_{1}\left(s_{1}^{*}, E_{1} s_{2}\right) \geq u_{1}\left(s_{1}, E_{1} s_{2}\right)$ for all s_{1} in S_{1}

Coordination
$E_{1} s_{2}=s_{2}^{*}$

Nash Equilibrium

- Formally

> Rationality
> $u_{1}\left(s_{1}^{*}, E_{1} s_{2}\right) \geq u_{1}\left(s_{1}, E_{1} s_{2}\right)$ for all s_{1} in S_{1}

Coordination
$E_{1} s_{2}=s_{2}^{*}$

Rationality \& Coordination => Equilibrium

Nash Equilibrium

- Q: When should we use equilibrium analysis to predict behavior?
- A: In situations where it is reasonable to assume that
- People are rational
- People for some reason understand what the outcome will be

Prisoners' Dilemma

- Exercise (for break)
- Consider Prisoners' Dilemma Game with \#months

	Clam	Rat
Clam	1,1	$10,10-\mathrm{r} 1$
Rat	$10-\mathrm{r} 1,10$	$10-\mathrm{r} 2,10-\mathrm{r} 2$

- What "rebates" $r 1$ and $r 2$ do you need to give in order to:
- Guarantee that (Rat, Rat) is an equilibrium?
- Guarantee that (Rat, Rat) is the only equilibrium?

Prisoners' Dilemma

- Exercise (for break)
- Consider Prisoners' Dilemma Game with \#months

	Clam	Rat
Clam	1,1	$10,10-\mathrm{r} 1$
Rat	$10-\mathrm{r} 1,10$	$10-\mathrm{r} 2,10-\mathrm{r} 2$

- What "rebates" r1 and r2 do you need to give in order to:
- Guarantee that (Rat, Rat) is an equilibrium?
- Guarantee that (Rat, Rat) is the only equilibrium?

Coordination Game

Coordination Game

- Situation
- Cars meet on roads
- If all keep to left (or right) they pass
- Otherwise they crash
- Sometimes choices are simultaneous
- curves
- top of hills

Coordination Game

- Lets try to represent such a situation as a game
- Lets make it as simple as possible

Coordination Game

- Represent situation as a game
- Q: Three components of game?
- Game = (Players, Strategies, Payoffs)
- Q: Players?
- Players = (driver 1, driver 2)
- Q: Strategy sets?
- Strategy set of driver i = (right, left)
- Q: Payoff functions (and outcomes)?

Coordination Game

- Outcomes

	Left	Right
Left	Pass	Crash
Right	Crash	Pass

- Payoffs

	Left	Right
Left	1,1	$-1,-1$
Right	$-1,-1$	1,1

Coordination Game

- Q: What outcome should we predict?
- A: Nash equilibrium
- Q: How do we find equilibrium?
- A: Best reply analysis

Coordination Game

- Q: Best reply function for player 1 ?

	Left	Right
Left	1,1	$-1,-1$
Right	$-1,-1$	1,1

- A: "Do the same"

	Left	Right
Left	$\underline{1}, 1$	$-1,-1$
Right	$-1,-1$	$\underline{1}, 1$

Coordination Game

- Q: Best reply function for player 2

	Left	Right
Left	1,1	$-1,-1$
Right	$-1,-1$	1,1

- A: "Do the same"

	Left	Right
Left	$1, \underline{1}$	$-1,-1$
Right	$-1,-1$	$1, \underline{1}$

Coordination Game

- Q : What is the equilibrium strategy profile?
- A: (left, left) and (right, right)

	Left	Right
Left	$\underline{1}, 1$	$-1,-1$
Right	$-1,-1$	$\underline{1}, \underline{1}$

Coordination Game

- Multiple equilibria
- In one and the same situation, there may exist several different outcomes that could be an equilibrium
- But only one outcome will actually happen
- Which equilibrium will be played?
- Requires some form of coordination
- Somehow all players need to come to understand what will happen

Coordination Game

- How does coordination arise?
- Ordinary game theory has no answer

1. Dominance

- Sometimes (e.g. prisoners' dilemma), but not here

2. Conventions

- May be the result of learning

3. Pre-play communication

- Anderson and Peterson specializing in comp. advantage
- Self-enforcing agreement

Coordination Game

- Google:
- Convention
- Social norm

Chicken

Chicken

- Situation: Single-lane bridge
- Drivers head for single-lane bridge from opposite directions
- Sometimes two drivers arrive at same time
- If both continue, they crash
- If both stop, both are delayed
- If one stops, he is delayed but the other can pass without delay

Coordination Game

- Represent situation as a game
- Q: Three components of game?
- Game = (Players, Strategies, Payoffs)
- Q: Players?
- Players = (driver 1, driver 2)
- Q: Strategy sets?
- Strategy set of driver i = (continue, stop)
- Q: Payoff functions (and outcomes)?

Chicken

- Outcomes

	Stop	Continue
Stop	Delay, Delay	Delay, Pass
Continue	Pass, Delay	Crash, Crash

- Payoffs

	Stop	Continue
Stop	0,0	0,2
Continue	2,0	$-10,-10$

Chicken

- Q: Find equilibrium

	Stop	Continue
Stop	0,0	0,2
Continue	2,0	$-10,-10$

Chicken

- Two equilibria (Continue, Stop) and (Stop, Continue)

	Stop	Continue
Stop	0,0	$\underline{0}, \underline{2}$
Continue	$\underline{2}, \underline{0}$	$-10,-10$

Chicken

- Both equilibria asymmetric
- Despite both players being in the "same situation"
- They have to behave differently
- They will receive different payoffs
- Equilibrium (convention/norm) cannot be "fair"

Chicken

- Coordination
- Pre-play communication difficult
- But: with joint coin tossing, expected payoff $=1$.
- Conventions/social norms
- Young let old pass first

ftime $p^{e^{r n i t s}}$

Stag Hunt

Stag Hunt

- Situation: Two hunters are to meet in the forest
- Two possibilities
- Bring equipment for hunting stag (= collaboration)
- Bring equipment for hunting hare (= not)
- If both choose stag
- Both get 10 kilos of meat
- If both choose hare
- One gets 2 kilos
- Other gets nothing
- Equal probabilities
- If one chooses stag and the other hare
- One with stag equipment gets nothing
- One with hare equipment gets 2 kilos

Coordination Game

- Represent situation as a game
- Q: Players?
- Players = (hunter 1, hunter 2)
- Q: Strategy sets?
- Strategy set = (stag, hare)
- Q: Payoff functions (and outcomes)?
- Payoff = expected kilos of meat

Stag Hunt

- Payoff matrix

	Stag	Hare
Stag	10,10	0,2
Hare	2,0	1,1

Stag Hunt

- Q: Equilibria?

	Stag	Hare
Stag	10,10	0,2
Hare	2,0	1,1

- A: (stag, stag) \& (hare, hare)

	Stag	Hare
Stag	$\underline{10}, \underline{10}$	0,2
Hare	2,0	$\underline{1}, \underline{1}$

Stag Hunt

- Q: Which should we believe in?

	Stag	Hare
Stag	$\underline{10}, \underline{10}$	0,2
Hare	2,0	$\underline{1}, \underline{1}$

- Stag equilibrium - Pareto dominates
- Hare equilibrium - less risky

Stag Hunt

- Q: Would pre-play communication work?

	Stag	Hare
Stag	10,10	0,2
Hare	2,0	1,1

- Not clear
- Both would prefer stag-equilibrium
- Player 1 may promise to bring stag equipment
- But he would say so also if he plans to go for hare

Football Penalty Game

Football Penalties

- Situation
- Two players: Shooter and Goal keeper
- Shooter decides which side to shoot
- Goalie decides which side to defend
- Q: Simultaneous choices?

Football Penalties

- Outcomes

	Defend Left	Defend Right
Shoot Left	No goal	Goal
Shoot Right	Goal	No goal

- Payoffs

	Defend Left	Defend Right
Shoot Left	$-1,1$	$1,-1$
Shoot Right	$1,-1$	$-1,1$

Football Penalties

- Q: Find equilibria!

	Defend Left	Defend Right
Shoot Left	$-1,1$	$1,-1$
Shoot Right	$1,-1$	$-1,1$

Football Penalties

- Best-reply analysis

	Defend Left	Defend Right
Shoot Left	$-1, \underline{1}$	$\underline{1},-1$
Shoot Right	$\underline{1},-1$	$-1,1$

- Conclusion
- No equilibrium exists

Football Penalties

- Interpretation
- Extreme competition: One player's gain is the other player's loss
- Zero-sum game
- Players don' t want to be predictable

Football Penalties

- What happens if goalie tosses a coin?
- If shooter goes left => probability of goal =50\%
- If shooter goes right => probability of goal =50\%
- I.e. Probability of goal = 50\%, independent of which side the shooter goes
- Expected utility to both $=0$, independent of which side the shooter goes

Football Penalties

- New game:

	Defend Left	Toss Coin	Defend Right
Shoot Left	$-1,1$	0,0	$1,-1$
Shoot Right	$1,-1$	0,0	$-1,1$

Football Penalties

- What happens if shooter tosses a coin?
- Probability of goal $=50 \%$, independent of which side the goalie goes
- Expected utility to both $=0$, independent of which side the goalie goes

Football Penalties

- New game

	Defend Left	Toss Coin	Defend Right
Shoot Left	$-1,1$	0,0	$1,-1$
Toss Coin	0,0	0,0	0,0
Shoot Right	$1,-1$	0,0	$-1,1$

Football Penalties

- Best-reply analysis

	Defend Left	Toss Coin	Defend Right
Shoot Left	$-1, \underline{1}$	$\underline{0}, 0$	$\underline{1},-1$
Toss Coin	$0, \underline{0}$	$\underline{0}, \underline{0}$	$0, \underline{0}$
Shoot Right	$\underline{1},-1$	$\underline{0}, 0$	$-1, \underline{1}$

- Conclusion
- Both tossing coin is equilibrium

Football Penalties

- Allowing players to toss coin restores equilibrium!
- This is true in general...
- ...but we need to allow players to choose probabilities of different alternatives freely

Interpretation

- But, do people "toss coins"?
- Not literarily...
- ...but in football penalty games the players sometimes go left and sometimes right
- they try to be unpredictable
- they behave as if they toss coins

Mixed Strategies and
 Existence of Equilibrium

Existence of Equilibrium

- If game has
- Finitely many players
- Each player has finitely many strategies
- Then, game has at least one Nash equilibrium
- Possibly in mixed strategies

Illustration

Not included this year!

Existence of Equilibrium

- Example
- 2 players
- Player 1 has two pure strategies: Up
- Player 2 has two pure strategies: Le
- Player 1's Payoffs: B > A, C > D,
- Player 2' s Payoffs: a>c,d>b

Exercise:
Find the Nash equilibria

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

Existence of Equilibrium

- Example
- 2 players
- Player 1 has two pure strategies: Up
- Player 2 has two pure strategies: Le
- Player 1's Payoffs: B > A, C > D,
- Player 2' s Payoffs: a>c,d>b

Solution:
No Nash equilibria

	Left	Right
Up	A, $\underline{\mathrm{a}}$	$\underline{\mathrm{C}}, \mathrm{c}$
Down	$\underline{\mathrm{B}}, \mathrm{b}$	D, $\underline{\mathrm{d}}$

Existence of Equilibrium

- Game in mixed strategies
- Let us now define a new game, which acknowledges that people may randomize their choices if they want to.
- Q: New game
- Players: Same as before
- Strategies: All possible probability distributions over "pure strategies"
- Payoffs: Expected payoff

Existence of Equilibrium

- Mixed strategies
- Player 2 selects Left with probability $p \quad$ (where $0 \leq p \leq 1)$
- Player 1 selects Up with probability $q \quad$ (where $0 \leq q \leq 1$)

Existence of Equilibrium

- Expected utility

$$
U_{1}(q, p)=A \cdot p \cdot q+B \cdot p \cdot(1-q)+C \cdot(1-p) \cdot q+D \cdot(1-p) \cdot(1-q)
$$

Where

$$
\begin{aligned}
p & =\operatorname{Prob}\{\operatorname{Left}\} \\
q & =\operatorname{Prob}\{U p\}
\end{aligned}
$$

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

Existence of Equilibrium

- Game in mixed strategies
- Players: 1 and 2
- Strategies: $\quad \mathrm{p}$ in $[0,1]$ and q in $[0,1]$
- Payoffs: $\quad \mathrm{U}_{1}(\mathrm{p}, \mathrm{q}) ; \mathrm{U}_{2}(\mathrm{p}, \mathrm{q})$

Existence of Equilibrium

Existence of Equilibrium

- Q: How do we make predictions?
- Find Nash equilibria in the new game
- Q: What procedure to we use?
- Derive best-reply functions

Existence of Equilibrium

- Notice: "the pure strategies are still there"
- Player 2 going Right corresponds to $\mathrm{p}=0$
- Player 2 going Left corresponds to $p=1$
- Player 1 going Down corresponds to $q=0$
- Player 1 going Up corresponds to $q=1$

Existence of Equilibrium

- A useful "trick"
- It turns out to be convenient to start out studying when the "pure strategies" are better than one another

Existence of Equilibrium

- Expected utility of pure strategies

$$
\begin{array}{ll}
U_{1}(p, 1)=A \cdot p+C \cdot(1-p) & q=1 \Leftrightarrow " U p " \\
U_{1}(p, 0)=B \cdot p+D \cdot(1-p) & q=0 \Leftrightarrow " \text { Down" } \\
p=\operatorname{Prob}\{\text { Left }\} &
\end{array}
$$

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

Existence of Equilibrium

- Player 1 prefers Up (ie q=1) if

$$
\begin{aligned}
& \tilde{U}_{1}(U p)>\tilde{U}_{1}(\text { Down }) \\
& \Leftrightarrow A \cdot p+C \cdot(1-p)>B \cdot p+D \cdot(1-p) \\
& \Leftrightarrow p<\frac{(C-D)}{(B-A)+(C-D)}
\end{aligned}
$$

 (Optimal q for every p)

$$
\begin{aligned}
& \tilde{U}_{1}(U p)>\tilde{U}_{1}(\text { Down }) \\
& \Leftrightarrow p<\frac{(C-D)}{(B-A)+(C-D)}
\end{aligned}
$$

If Up is better than Down,

Then, Player 1 selects Up with probability one

Existence of Equilibrium

- Player 1 prefers Down (ie $q=0$) if

$$
\begin{aligned}
& \tilde{U}_{1}(U p)<\tilde{U}_{1}(D o w n) \\
& \Leftrightarrow A \cdot p+C \cdot(1-p)<B \cdot p+D \cdot(1-p) \\
& \Leftrightarrow p>\frac{(C-D)}{(B-A)+(C-D)}
\end{aligned}
$$

Existence of Equilibrium

Existence of Equilibrium

- Player 1 indifferent if

$$
\begin{aligned}
& \tilde{U}_{1}(U p)=\tilde{U}_{1}(D o w n) \\
& \Leftrightarrow A \cdot p+C \cdot(1-p)=B \cdot p+D \cdot(1-p) \\
& \Leftrightarrow p=\frac{(C-D)}{(B-A)+(C-D)}
\end{aligned}
$$

Existence of Equilibrium

Existence of Equilibrium

Existence of Equilibrium

Exercise
 (mixed equilibrium)

Exercise

- Battle of the sexes
- Two spouses want to go out, either to see a football game or a theater play
- The man enjoys football (but not theater)
- The woman enjoys theater (but not football)
- They both enjoy each other' s company

Existence of Equilibrium

- Payoff matrix
- Man is player one
- $v=$ value of preferred alternative (0 is value of other)
$-t=$ value of being together
- Assume t>v.

	Football	Theater
Football	$\mathrm{v}+\mathrm{t}, \mathrm{t}$	v, v
Theater	0,0	$\mathrm{t}, \mathrm{v}+\mathrm{t}$

Existence of Equilibrium

- To do
- Define the game in mixed strategies
- Find the man's best-reply function. Display in diagram
- Same for woman
- Find equilibria
- Which is more plausible?

	Football	Theater
Football	$\mathrm{v}+\mathrm{t}, \mathrm{t}$	v, v
Theater	0,0	$\mathrm{t}, \mathrm{v}+\mathrm{t}$

