

Static Games

Johan Stennek

Interdependent decisions

- Food retailing
 - ICA:s optimal price depends on Coop:s price
 - Coop: optimal price depends on ICA:s price
- How analyze?

Interdependent decisions

- Theory of interdependent decision making (a.k.a Game Theory)
 - How should we expect people to behave when the outcome depends on several persons actions?

• Police arrest two suspects

- Enough evidence for short conviction (1 month)
- More evidence needed for long conviction (10 months)
- Can the prisoners be made to confess?
 - Prosecutor asks prisoners independently to "rat"
 = provide information
 - Offering a rebate on the sentence

• Sentences after rebates:

- If both "clam"
 - both get 1 month
- If one person "rats"
 - the betrayer goes free
 - the other gets 10 months
- If both "rat"
 - both get 4 months

- Prisoners put in separate cells
 - Simultaneous decisions

An outcome matrix summarizes the game:

If prisoner 1 rats and prisoner 2 clams:

- Prisoner 1 goes free
- Prisoner 2 gets 10 months

An outcome matrix summarizes the game:

		Prisoner 2	
		Clam	Rat
Dricemen 1	Clam	1, <mark>1</mark>	10, <mark>0</mark>
	Rat	0, 10	4, <mark>4</mark>

Complete information

- Both prisoners know all facts

<u>Q</u>: Assume you are prisoner 1

- What would you do?

An outcome matrix summarizes the game:

		Prisoner 2	
		Clam	Rat
Driegner 1	Clam	1, <mark>1</mark>	10, <mark>0</mark>
Prisoner I	Rat	0, <mark>10</mark>	4, 4

If you only care for the other:

- Clam!

If you are selfish:

- Rat!

An outcome matrix summarizes the game:

		Prisoner 2	
		Clam	Rat
Drie en en 1	Clam	1, <mark>1</mark>	10, <mark>0</mark>
Prisoner i	Rat	0, 10	4, 4

We need to know people's preferences to predict how they will behave!

- Alternative representation
 - Utility = 10 #months
- Payoff matrix

Selfish

 Prisoners only care about their own sentence

	Clam	Rat
Clam	9, 9	0, 10
Rat	10, 0	6, 6

Convention

- Player 1 is row player

Complete information

- Both prisoners know all facts

- Assume they agreed to clam
 - Will they honor the agreement?

- Best-reply function
 - Simple procedure to predict behavior

• Player 1

– Q: what is player 1's best choice if 2 would clam?

- A: to rat

	Clam	Rat
Clam	<mark>9</mark> , 9	0, 10
Rat	<u>10</u> , 0	6, 6

Best reply = utility maximizing choice for a given behavior by the other

• Player 1

- Q: what is player 1's best choice if 2 would rat?

- A: to rat

	Clam	Rat
Clam	9, 9	<mark>0</mark> , 10
Rat	<u>10</u> , 0	<u>6</u> , 6

Best reply = utility maximizing choice for a given behavior by the other

• Player 1:s best reply *function*

- IF player 2 clams, THEN player 1:s best reply is to rat
- IF player 2 rats, THEN player 1:s best reply is to rat

	Clam	Rat
Clam	9, 9	0, 10
Rat	<u>10</u> , 0	<u>6</u> , 6

Best reply

= utility maximizing choice for **a given** behavior by the other

Best reply function

= rule assigning best choice for **every possible** behavior by the other

- Here player 1's best-reply function says
 - Rat, independent of what the other player does

Notice: Rat is a strictly dominating strategy.

Definition: A strategy is strictly dominating if

- it is strictly better than all other strategies,
- independent of what other people do.

Notice: Very rare

- Here player 1's best-reply function says
 - Rat, independent of what the other player does

Notice: Clam is a strictly dominated strategy.

if

One should never play a strictly dominated strategy

Notice: Quite common.

• Player 2

– Q: what is player 2' s best choice if 1 would clam?

- A: to rat

	Clam	Rat
Clam	9, <mark>9</mark>	0, <u>10</u>
Rat	10, 0	6, 6

• Player 2

- Q: what is player 2's best choice if 1 would rat?

- A: to rat

	Clam	Rat
Clam	9, 9	0, <u>10</u>
Rat	10, <mark>0</mark>	6, <u>6</u>

- Player 2:s best reply *function*
 - IF player 1 clams, THEN player 2:s best reply is to rat
 - IF player 1 rats, THEN player 2:s best reply is to rat

	Clam	Rat
Clam	9, 9	0, <u>10</u>
Rat	10, 0	6, <u>6</u>

- Here player 2's best-reply function says
 - Rat, independent of what the other player does
- Conclusion
 - Both will rat

- Important insights
 - 1. Conflict: Private incentives vs. Efficiency
 - Rational choice may lead to bad outcomes
 - 2. Agreements beforehand do not matter, if players don't have incentives to follow agreement
 - 3. Sometimes exist dominant strategies

- Player 1 is a "moral person" (or altruist)
 - Utility = 20Σ #months

• Outcome matrix (months)

	Clam	Rat
Clam	1, 1	10, 0
Rat	0, 10	4, 4

• Payoff matrix

	Clam	Rat
Clam	18, 9	10, 10
Rat	10, 0	12, 6

	Clam	Rat
Clam	18, 9	10, 10
Rat	10, 0	12, 6

Q: Does player 1 have strictly dominated strategy?

	Clam	Rat
Clam	<u>18</u> , 9	10, 10
Rat	10, 0	<u>12</u> , 6

Q: Does player 1 have strictly dominated strategy?

A: No

- Better to clam if 2 clams
- Better to rat if 2 rats

	Clam	Rat
Clam	<u>18</u> , 9	10, 10
Rat	10, 0	<u>12</u> , 6

Q: What should player 1 do?

	Clam	Rat
Clam	<u>18</u> , 9	10, <u>10</u>
Rat	10, 0	<u>12, 6</u>

A:

- Player 1 knows that player 2 will rat!
- Then better for 1 to also rat!

	Clam	Rat
Clam	<u>18</u> , 9	10, <u>10</u>
Rat	10, 0	<u>12, 6</u>

Important insight

In a strategic situation, people need to put themselves into other peoples shoes

	Clam	Rat
Clam	<u>18</u> , 9	10, <u>10</u>
Rat	10, 0	<u>12, 6</u>

Notice: if (rat, rat) would be played

- Player 1 plays a best reply against player 2's behavior
- Player 2 plays a best reply against player 1's behavior

We say (rat, rat) is an *equilibrium*

Player 1 maximizes utility, given player 2's behavior Player 2 maximizes utility, given player 1's behavior

- <u>Q</u>: Is any other outcome an equilibrium?
 - A: No!
 - E.g.: (clam, rat) => player 1 has incentive to change behavior

	Clam	Rat
Clam	9, 9	0, <u>10</u>
Rat	<u>10</u> , 0	<u>4</u> , <u>4</u>

Games in normal form
Normal Form

• Game in normal form

- Players
- Strategies
- Payoffs (for all possible combinations of strategies)

Prisoners Dilemma

- Players: Prisoner 1, Prisoner 2
- Strategies: rat, clam
- Payoffs: u_1 (clam, rat) = 10, and so on.

Normal Form

• Payoff matrix

- Summarizes normal form (of 2-person game)

- Interpretation
 - Players choose simultaneously
 - Players know the game

- Definition: *Strategy profile*
 - A list of strategies, one for each player
- Example (Prisoners' Dilemma)
 - (rat, rat), (rat, clam), (clam, rat), (clam, clam)

- Definition: Nash equilibrium
 - A strategy profile such that
 - i. each player maximizes his utility,
 - ii. given that all other players follow their strategies

Formal definition for two-player game

Strategy profile (s_1^*, s_2^*) is a Nash Equilibrium if : $u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$ for all s_1 in S_1 $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$ for all s_2 in S_2

- Why should we expect people to follow equilibrium?
 - Equilibrium behavior is by no means guaranteed,
 - but...

• Assume

1. All people are *rational*

(= they maximize their utilities, given their expectations of what other people will do)

- 2. All people *know* what will happen, before they make their choices
- Then
 - People must behave according to an equilibrium

- Argument: Assume the opposite
 - All people rational & All people know what will happen
 - Their behavior is not a NE (ex: Clam, Clam)
- Then
 - Then at least one person is supposed not to play best reply
 - Then at least this person will <u>deviate</u> from the prediction, since he is rational
 - Then, after all, people <u>didn't know</u> what was going to happen

• Formally

Rationality $u_1(s_1^*, E_1s_2) \ge u_1(s_1, E_1s_2)$ for all s_1 in S_1

• Formally

Rationality $u_1(s_1^*, E_1s_2) \ge u_1(s_1, E_1s_2)$ for all s_1 in S_1

Coordination

 $E_1 s_2 = s_2^*$

• Formally

Rationality $u_1(s_1^*, E_1s_2) \ge u_1(s_1, E_1s_2)$ for all s_1 in S_1

Coordination

 $E_1 s_2 = s_2^*$

Rationality & Coordination => Equilibrium

- <u>Q</u>: When should we use equilibrium analysis to predict behavior?
 - A: In situations where it is reasonable to assume that
 - People are rational
 - People for some reason understand what the outcome will be

- Exercise (for break)
 - Consider Prisoners' Dilemma Game with #months

	Clam	Rat
Clam	1, 1	10, 10 – r1
Rat	10 – r1, 10	10 – r2, 10 – r2

- What "rebates" r1 and r2 do you need to give in order to:
 - Guarantee that (Rat, Rat) is an equilibrium?
 - Guarantee that (Rat, Rat) is the only equilibrium?

- Exercise (for break)
 - Consider Prisoners' Dilemma Game with #months

	Clam	Rat
Clam	1, 1	10, 10 – r1
Rat	10 – r1, 10	10 – r2, 10 – r2

- What "rebates" r1 and r2 do you need to give in order to:
 - Guarantee that (Rat, Rat) is an equilibrium?
 - Guarantee that (Rat, Rat) is the only equilibrium?

Answers

• Situation

- Cars meet on roads
- If all keep to left (or right) they pass
- Otherwise they crash
- Sometimes choices are simultaneous
 - curves
 - top of hills

- Lets try to represent such a situation as a game
- Lets make it as simple as possible

- Represent situation as a game
 - Q: Three components of game?
 - Game = (Players, Strategies, Payoffs)
 - Q: Players?
 - Players = (driver 1, driver 2)
 - Q: Strategy sets?
 - Strategy set of driver i = (right, left)
 - Q: Payoff functions (and outcomes)?

• Outcomes

	Left	Right
Left	Pass	Crash
Right	Crash	Pass

• Payoffs

	Left	Right
Left	1, 1	-1, -1
Right	-1, -1	1, 1

• Q: What outcome should we predict?

– A: Nash equilibrium

- Q: How do we find equilibrium?
 - A: Best reply analysis

• Q: Best reply function for player 1?

	Left	Right
Left	1, 1	-1, -1
Right	-1, -1	1, 1

• A: "Do the same"

	Left	Right
Left	<u>1,</u> 1	-1, -1
Right	-1, -1	<u>1,</u> 1

• Q: Best reply function for player 2

	Left	Right
Left	1, 1	-1, -1
Right	-1, -1	1, 1

• A: "Do the same"

	Left	Right
Left	1, <u>1</u>	-1, -1
Right	-1, -1	1, <u>1</u>

- Q: What is the equilibrium strategy profile?
- A: (left, left) and (right, right)

	Left	Right
Left	<u>1, 1</u>	-1, -1
Right	-1, -1	<u>1, 1</u>

- Multiple equilibria
 - In one and the same situation, there may exist several different outcomes that could be an equilibrium
 - But only one outcome will actually happen
- Which equilibrium will be played?
 - Requires some form of coordination
 - Somehow all players need to come to understand what will happen

- How does coordination arise?
 - Ordinary game theory has no answer
 - 1. Dominance
 - Sometimes (e.g. prisoners' dilemma), but not here
 - 2. Conventions
 - May be the result of learning
 - 3. Pre-play communication
 - Anderson and Peterson specializing in comp. advantage
 - Self-enforcing agreement

- Google:
 - Convention
 - Social norm

- Situation: Single-lane bridge
 - Drivers head for *single-lane* bridge from opposite directions
 - Sometimes two drivers arrive at same time
 - If both continue, they crash
 - If both stop, both are delayed
 - If one stops, he is delayed but the other can pass without delay

- Represent situation as a game
 - Q: Three components of game?
 - Game = (Players, Strategies, Payoffs)
 - Q: Players?
 - Players = (driver 1, driver 2)
 - Q: Strategy sets?
 - Strategy set of driver i = (continue, stop)
 - Q: Payoff functions (and outcomes)?

• Outcomes

	Stop	Continue
Stop	Delay, Delay	Delay, Pass
Continue	Pass, Delay	Crash, Crash

• Payoffs

	Stop	Continue
Stop	0, 0	0, 2
Continue	2, 0	-10, -10

• Q: Find equilibrium

	Stop	Continue
Stop	0, 0	0, 2
Continue	2, 0	-10, -10

• Two equilibria (Continue, Stop) and (Stop, Continue)

	Stop	Continue
Stop	0, 0	<u>0</u> , <u>2</u>
Continue	<u>2, 0</u>	-10, -10

- Both equilibria *asymmetric*
 - Despite both players being in the "same situation"
 - They have to behave differently
 - They will receive different payoffs
 - Equilibrium (convention/norm) cannot be "fair"

Coordination

- Pre-play communication difficult
 - But: with joint coin tossing, expected payoff =1.
- Conventions/social norms
 - Young let old pass first

Stag Hunt

- Situation: Two hunters are to meet in the forest
 - Two possibilities
 - Bring equipment for hunting stag (= collaboration)
 - Bring equipment for hunting hare (= not)
 - If both choose stag
 - Both get 10 kilos of meat
 - If both choose hare
 - One gets 2 kilos
 - Other gets nothing
 - Equal probabilities
 - If one chooses stag and the other hare
 - One with stag equipment gets nothing
 - One with hare equipment gets 2 kilos
Coordination Game

- Represent situation as a game
 - Q: Players?
 - Players = (hunter 1, hunter 2)
 - Q: Strategy sets?
 - Strategy set = (stag, hare)
 - Q: Payoff functions (and outcomes)?
 - Payoff = expected kilos of meat

• Payoff matrix

	Stag	Hare
Stag	10, 10	0, 2
Hare	2, 0	1, 1

• Q: Equilibria?

	Stag	Hare
Stag	10, 10	0, 2
Hare	2, 0	1, 1

• A: (stag, stag) & (hare, hare)

	Stag	
Stag	<u>10, 10</u>	0, 2
Hare	2, 0	<u>1, 1</u>

• Q: Which should we believe in?

	Stag	Hare
Stag	<u>10, 10</u>	0, 2
Hare	2, 0	<u>1, 1</u>

- Stag equilibrium Pareto dominates
- Hare equilibrium less risky

• Q: Would pre-play communication work?

	Stag	Hare
Stag	10, 10	0, 2
Hare	2, 0	1, 1

• Not clear

- Both would prefer stag-equilibrium
- Player 1 may promise to bring stag equipment
- But he would say so also if he plans to go for hare

Football Penalty Game

- Situation
 - Two players: Shooter and Goal keeper
 - Shooter decides which side to shoot
 - Goalie decides which side to defend
 - Q: Simultaneous choices?

• Outcomes

	Defend Left	Defend Right
Shoot Left	No goal	Goal
Shoot Right	Goal	No goal

• Payoffs

	Defend Left	Defend Right
Shoot Left	-1, 1	1, -1
Shoot Right	1, -1	-1, 1

• <u>Q</u>: Find equilibria!

	Defend Left	Defend Right
Shoot Left	-1, 1	1, -1
Shoot Right	1, -1	-1, 1

• Best-reply analysis

	Defend Left	Defend Right
Shoot Left	-1, <u>1</u>	<u>1,</u> -1
Shoot Right	<u>1,</u> -1	-1, <u>1</u>

- Conclusion
 - No equilibrium exists

- Interpretation
 - Extreme competition: One player's gain is the other player's loss
 - Zero-sum game
 - Players don't want to be predictable

- What happens if goalie tosses a coin?
 - If shooter goes left => probability of goal = 50%
 - If shooter goes right => probability of goal = 50%
 - I.e. Probability of goal = 50%,
 independent of which side the shooter goes
 - Expected utility to both = 0,
 independent of which side the shooter goes

• New game:

	Defend Left	Toss Coin	Defend Right
Shoot Left	-1, 1	0, 0	1, -1
Shoot Right	1, -1	0, 0	-1, 1

- What happens if shooter tosses a coin?
 - Probability of goal = 50%,
 independent of which side the goalie goes
 - Expected utility to both = 0,
 independent of which side the goalie goes

• New game

	Defend Left	Toss Coin	Defend Right
Shoot Left	-1, 1	0, 0	1, -1
Toss Coin	0, 0	0, 0	0, 0
Shoot Right	1, -1	0, 0	-1, 1

• Best-reply analysis

	Defend Left	Toss Coin	Defend Right
Shoot Left	-1, <u>1</u>	<u>0</u> , 0	<u>1</u> , -1
Toss Coin	0, <u>0</u>	<u>0</u> , <u>0</u>	0, <u>0</u>
Shoot Right	<u>1</u> , -1	<u>0</u> , 0	-1, <u>1</u>

- Conclusion
 - Both tossing coin is equilibrium

- Allowing players to toss coin restores equilibrium!
 - This is true in general...
 - ...but we need to allow players to choose probabilities of different alternatives freely

Interpretation

- But, do people "toss coins"?
 - Not literarily...
 - ...but in football penalty games the players sometimes go left and sometimes right
 - they try to be unpredictable
 - they behave *as if* they toss coins

Mixed Strategies and Existence of Equilibrium

- If game has
 - Finitely many players
 - Each player has finitely many strategies
- Then, game has at least one Nash equilibrium
 - Possibly in mixed strategies

Illustration

Not included this year !

• Example

- 2 players
- Player 1 has two pure strategies: Up
- Player 2 has two pure strategies: Le⁻

Exercise:

Find the Nash equilibria

- Player 1's Payoffs: B > A, C > D,
- Player 2's Payoffs: a > c, d > b

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

Solution:

No Nash

equilibria

• Example

- 2 players
- Player 1 has two pure strategies: Up
- Player 2 has two pure strategies: Le⁻
- Player 1's Payoffs: B > A, C > D,
- Player 2' s Payoffs: a > c, d > b

	Left	Right
Up	A, <u>a</u>	<u>C</u> , c
Down	<u>B</u> , b	D, <u>d</u>

- Game in mixed strategies
 - Let us now define a *new game*, which acknowledges that *people may randomize* their choices if they want to.
- <u>Q</u>: New game
 - Players: Same as before
 - Strategies: All possible probability distributions over "pure strategies"
 - Payoffs: Expected payoff

- Mixed strategies
 - Player 2 selects Left with probability p (where $0 \le p \le 1$)
 - Player 1 selects Up with probability q (where $0 \le q \le 1$)

• Expected utility $p^{*}q = \text{Prob (Up \& Left)}$ $U_{1}(q,p) = A \cdot p \cdot q + B \cdot p \cdot (1-q) + C \cdot (1-p) \cdot q + D \cdot (1-p) \cdot (1-q)$

Where $p = Prob \{Left\}$ $q = Prob \{Up\}$

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

- Game in mixed strategies
 - Players: 1 and 2
 - Strategies: p in [0, 1] and q in [0, 1]
 - Payoffs: $U_1(p,q); U_2(p,q)$

- Q: How do we make predictions?
 - Find Nash equilibria in the new game
- Q: What procedure to we use?
 - Derive best-reply functions

- Notice: "the pure strategies are still there"
 - Player 2 going Right corresponds to p = 0
 - Player 2 going Left corresponds to p = 1
 - Player 1 going Down corresponds to q = 0
 - Player 1 going Up corresponds to q = 1

- A useful "trick"
 - It turns out to be convenient to start out studying when the "pure strategies" are better than one another

• Expected utility of pure strategies

 $U_1(p,1) = A \cdot p + C \cdot (1-p) \qquad q = 1 \Leftrightarrow "Up"$ $U_1(p,0) = B \cdot p + D \cdot (1-p) \qquad q = 0 \Leftrightarrow "Down"$

 $p = Prob\{Left\}$

	Left	Right
Up	A, a	C, c
Down	B, b	D, d

• Player 1 prefers Up (ie q=1) if

 $\tilde{U}_1(Up) > \tilde{U}_1(Down)$

$$\Leftrightarrow A \cdot p + C \cdot (1-p) > B \cdot p + D \cdot (1-p)$$

$$\Leftrightarrow p < \frac{(C-D)}{(B-A) + (C-D)}$$

 $\overline{(B-A)+(C-D)}$

 $\overline{(B-A)+(C-D)}$

• Player 1 prefers Down (ie q=0) if

 $\tilde{U}_1(Up) < \tilde{U}_1(Down)$

$$\Leftrightarrow A \cdot p + C \cdot (1-p) < B \cdot p + D \cdot (1-p)$$

$$\Leftrightarrow p > \frac{(C-D)}{(B-A) + (C-D)}$$

• Player 1 indifferent if

 $\tilde{U}_1(Up) = \tilde{U}_1(Down)$

$$\Leftrightarrow A \cdot p + C \cdot (1-p) = B \cdot p + D \cdot (1-p)$$

$$\Leftrightarrow p = \frac{(C-D)}{(B-A) + (C-D)}$$

Exercise (mixed equilibrium)

Exercise

- Battle of the sexes
 - Two spouses want to go out, either to see a football game or a theater play
 - The man enjoys football (but not theater)
 - The woman enjoys theater (but not football)
 - They both enjoy each other's company

• Payoff matrix

- Man is player one
- v = value of preferred alternative (0 is value of other)
- t = value of being together
- Assume t > v.

	Football	Theater
Football	v+t, t	V, V
Theater	0, 0	t, v+t

• To do

- Define the game in mixed strategies
- Find the man's best-reply function. Display in diagram
- Same for woman
- Find equilibria
- Which is more plausible?

	Football	Theater
Football	v+t, t	V, V
Theater	0, 0	t, v+t