School of Business,
Economics and Law göteborg university

Auctions

Johan Stennek

Auctions

- Examples
- Antiques, fine arts
- Houses, apartments, land
- Government bonds, bankrupt assets
- Government contracts (roads)
- Radio frequencies

Auctions

Why use auction?

- Seller's goal
- Maximize revenues (you selling your apartment)
- Efficient use (Government selling radio spectrum)
- Problem
- Seller doesn't know what people are willing to pay
- What is the highest valuation?
- Who has it?
- Solution
- Buyer claiming highest valuation gets the good
- And will pay accordingly
- Auction $=$ Mechanism to extract information

Auctions

But are auctions a good solution?

- Efficiency
- IF: people really "tell the truth" = bid their valuations
- THEN: good will be allocated correctly
- Revenues
- IF: people really "tell the truth" = bid their valuations
- THEN: price will be high (efficiency \& extract WTP)
- Question: Do people "tell the truth"?
- Need to study bidding behavior

Auctions

- Bidding behavior turns out to depend on:
- Exact rules of the auction (Auction design)
- How buyer's valuations are related (Type of uncertainty)

Auctions

4 Designs

- English ("open cry")
- Sequential + perf. info
- Ascending bids
- Sealed bid, first price
- Simultaneous
- Winner pays own bid

Auctions

Types of Uncertainty

- Private value
- Different buyers have different values
- Common value
- Same valupis study private value
-B we will only

English Auction

English Auction

- Assume
- One indivisible unit of the good
- Two bidders
- Information
- Bidders get to know own valuations, v_{1} and v_{2}
- Then the bidding game starts
- Bidding rules: a simple model
- Players take turns bidding
- Whenever one player does not bid at least €1 more, the good is sold to the current bid

English Auction

- Outcome
- Winner = Highest bidder
- Price $=$ Highest bid

Second-Price Sealed-Bids

- Utility
$u_{i}=\left\{\begin{array}{cc}v_{i}-b_{j} & \text { if winning } \\ 0 & \text { otherwise }\end{array}\right.$

English Auction

- Define: "marginal increases strategy" for i
- If current bid < valuation, raise by $€ 1$
- If current bid > valuation, stop bidding
- Formally
- IF: $b_{j t-1}+1 \leq v_{i}$, THEN: bid $b_{i t}=b_{j t-1}+1$
$-I F: \mathrm{b}_{\mathrm{jt}-1}+1>\mathrm{v}_{\mathrm{i}}$, THEN: stop bidding
- Claim
- This strategy is optimal (actually, dominant)

English Auction

- Sketch of proof
- If $b_{2 t-1}<v_{1}$
- Outbid: Positive utility with (weakly) positive probability
- Withdraw: $\mathrm{u}_{1}=0$ for sure
- No reason to raise by more than €1
- If $\mathrm{b}_{2 \mathrm{t}-1} \geq \mathrm{v}_{1}$
- Withdraw: $u_{1}=0$ for sure
- Outbid: Negative utility with (weakly) positive probability
- Note - dominance
- Above strategy optimal
- no matter how $b_{2 t-1}$ selected

English Auction

- Outcome
- Q: "Truth telling"?
- Sort of...
- people keep raising the price until the bid is equal to their valuation (or nobody else continues to bid)
- Q: Who gets the good?

English Auction

- Outcome
- "Truth telling"
- Efficiency
- Bidder with highest valuation wins the good
- Q: Who gets the surplus?

English Auction

- Outcome
- "Truth telling"
- Efficiency
- Bidder with highest valuation wins the good
- Surplus-sharing
- $\mathrm{p}=\mathrm{SHV}$ (sometimes $\mathrm{p}=\mathrm{SHV}+1$)

First-Price Sealed-Bids Auction

First-Price Sealed-Bids

- Rules
- Simultaneous bids (= sealed bids)
- Winner pays his bid (= first price)

First-Price Sealed-Bids

- Trade-off
- Higher bid \rightarrow Higher probability of winning
- Higher bid \rightarrow Higher price

First-Price Sealed-Bids

- Simplification
- Two bidders: $\mathrm{v}_{1}, \mathrm{v}_{2}$
$-v_{i}$ uniformly distributed over [0, 1]

First-Price Sealed-Bids

- Q: Probability that $\mathrm{v}_{\mathrm{i}}<\mathrm{x}$?

- $A: \operatorname{Prob}\left(v_{i}<x\right)=x$

First-Price Sealed-Bids

- Payoff = expected utility

$$
\begin{aligned}
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}(\text { win })+0 \operatorname{Pr}(\text { loose }) \\
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>b_{2}\right)
\end{aligned}
$$

Depends on
$\mathrm{b}_{1}=$ own choice
$b_{2}=$ random variable

First-Price Sealed-Bids

- Payoff = expected utility

$$
\begin{aligned}
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}(\text { win })+0 \operatorname{Pr}(\text { loose }) \\
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>b_{2}\right)
\end{aligned}
$$

We need to compute probability that $b_{2}<b_{1}$

First-Price Sealed-Bids

- Payoff = expected utility

$$
\begin{aligned}
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}(\text { win })+0 \operatorname{Pr}(\text { loose }) \\
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>b_{2}\right)
\end{aligned}
$$

Simplifying assumption:

$$
b_{2}=z \cdot v_{2}
$$

First-Price Sealed-Bids

- Payoff = expected utility

$$
\begin{aligned}
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}(\text { win })+0 \operatorname{Pr}(\text { loose }) \\
& -E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>b_{2}\right)
\end{aligned}
$$

$$
-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>z \cdot v_{2}\right)
$$

$$
-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(v_{2}<b_{1} / z\right)
$$

$$
-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right)\left(b_{1} / z\right)
$$

First-Price Sealed-Bids

- Conclusion
-IF: $\quad \mathrm{b}_{2}=\mathrm{z} \cdot \mathrm{v}_{2}$
-THEN: $\quad E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right)\left(b_{1} / z\right)$
- Q: What is player 1's best reply?

First-Price Sealed-Bids

- What is 1's best reply?
$-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right)\left(b_{1} / z\right)$
- FOC: $(-1)\left(b_{1} / z\right)+\left(v_{1}-b_{1}\right)(1 / z)=0$

Utility if winning * Increased probability of winning

First-Price Sealed-Bids

- Assume

$$
-B_{2}\left(v_{2}\right)=z v_{2}
$$

- What is 1's best reply?
$-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right)\left(b_{1} / z\right)$
- FOC: $(-1)\left(b_{1} / z\right)+\left(v_{1}-b_{1}\right)(1 / z)=0$

Decreased utility * probability of winning

First-Price Sealed-Bids

Proof

- Assume

$$
-B_{2}\left(v_{2}\right)=z v_{2}
$$

- What is 1's best reply?
$-E \pi_{1}\left(b_{1}\right)=\left(v_{1}-b_{1}\right)\left(b_{1} / z\right)$
- FOC: $-\left(b_{1} / z\right)+\left(v_{1}-b_{1}\right) / z=0$
- Solve: $b_{1}=1 / 2 \cdot v_{1}$

First-Price Sealed-Bids

Proof

- Conclusion
- IF: Bidder 2 uses a linear strategy: $\quad B_{2}\left(v_{2}\right)=z \cdot v_{2}$
- THEN: Best reply for bidder 1: $\quad B_{1}\left(v_{1}\right)=1 / 2 \cdot v_{1}$
- Note
- Since $1 / 2 \cdot v_{1}$ is linear
- Since players are symmetric
- Both bidding $b_{i}=1 / 2 \cdot v_{i}$ is a Nash equilibrium of a game where the strategy for each player is to choose some function $B_{i}\left(v_{i}\right)$.

First-Price Sealed-Bids

- Interpretation
- Why bid $1 ⁄ 2 \mathrm{v}$?
- Answer 1
- Optimal balance between
- probability of winning
- price in case of winning

First-Price Sealed-Bids

- Interpretation
- But why exactly $1 / 2$?
- Answer 2

- Assume you have highest valuation
- $\underline{\mathrm{Q}}$: What is the expected second highest valuation?
- Winner bids expected wtp of competitor
=> competitor no incentive to bid more

First-Price Sealed-Bids

- Remark
- With more bidders, expected second highest wtp is closer to highest wtp
- Bid larger share of wtp
- As $\mathrm{n} \rightarrow \infty \mathrm{b} \rightarrow$ wtp

First-Price Sealed-Bids

- Outcome
- Q: Who gets the good?

First-Price Sealed-Bids

- Outcome
- Efficiency
- Bidder with highest valuation wins the good
- Q: Who gets the surplus?

First-Price Sealed-Bids

- Outcome
- Efficiency
- Bidder with highest valuation wins the good
- Surplus-sharing
- $p=1 / 2 H V$
- Truth-telling?

First-Price Sealed-Bids

- Outcome
- Efficiency
- Bidder with highest valuation wins the good
- Surplus-sharing
- $p=1 / 2 H V$
- "Sort of truth-telling"
- Players actually reveal their valuation

Game Theoretic "Details"

Auction = Game of Incomplete Information

Game of Incomplete Information

- Game with incomplete information
- Buyers don't know each others' valuations
- Ada is not able to predict Ben's bid exactly
- It depends on Ben's valuation of the object
- How should Ada and Ben analyze the situation?

Game of Incomplete Information

- Solution I: Change definition of strategy
- Strategy $=$ Function prescribing bid for every possible valuation a player may have
- Example of strategy
- IF wtp $=\mathrm{v}_{\mathrm{H}}$ THEN bid $=\mathrm{b}_{\mathrm{H}}$
- IF wtp $=v_{\mathrm{L}}$ THEN bid $=b_{\mathrm{L}}$
- Then, players able to
- Predict rival's strategy, even if uncertainty about type and bid remains
- Maximize expected payoff

Game of Incomplete Information

- But why are strategies functions?
- Ada knows she has high valuation, V_{H}
- Why should she choose strategy with instruction for v_{L} ?
- Answer
- Ben doesn't know Ada's valuation. Could be v_{H} or v_{L}
- Ben must consider
- What would Ada bid if v_{H}
- What would Ada bid if V_{L}
- To predict Ben's bid, Ada must also consider what she herself would have bid in case of v_{L}

Game of Incomplete Information

- Think of Ada's choice as two-step procedure

1. Find optimal bid for all possible valuations: $\mathrm{b}^{\text {Ada }}\left(\mathrm{v}_{\mathrm{H}}\right)$ and $\mathrm{b}^{\text {Ada }}\left(\mathrm{v}_{\mathrm{L}}\right)$
2. Select the relevant bid: $b^{\text {Ada }}\left(v_{H}\right)$

Game of Incomplete Information

- Solution II: Change definition of payoff
- Payoff = expected utility

Game of Incomplete Information

Bayesian Nash Equilibrium

- Pair of strategies ($b^{A d a}, b^{B e n}$) such that
- $b^{\text {Ada }}$ is a best reply to $b^{\text {Ben }}$
- $b^{\text {Ada }}\left(v_{H}\right)$ maximizes Ada's expected utility
- If Ada's valuation is V_{H}
- Assuming Ben uses $b^{\text {Ben }}$
- $b^{\text {Ada }}\left(v_{\mathrm{L}}\right)$ maximizes Ada's expected utility
- If Ada's valuation is V_{L}
- Assuming Ben uses $b^{\text {Ben }}$
- $b^{\text {Ben }}$ is a best reply to $b^{\text {Adam }}$

Most fundamental result of auction theory

Fundamental result

Note 1: No individual knows who has the highest valuation

Note 2: But if people play the auction game
\Rightarrow person with highest valuation walks away with the good

No individual (even a dictator)

could have implemented the efficient allocation, since nobody has sufficient information

But the market mechanism actually solves the maximization problem

May say the market aggregates information

* must use all the information to solve the max-problem
* despite the fact that it is scattered

Fundamental result

- Laboratory experiments
- It works! (Vernon Smith)
- Also double auctions
- Even with "few" buyers and "few" sellers market quickly converges to competitive price
- NB: must use laboratory to know people's
valuations

Fundamental result

Sure, it is not perfect...
...there is also market failure...

- Coordination (mis-pricing; recessions)
- Double coincidence of wants (kidneys, apartments)
- Externalities (global warming; telecom)
- Public goods (R\&D; legal system to enforce all contracts)
- Market power (medicines; district heating)
- Incomplete information (cars, insurance, labor, credit)
...and an uneven distribution of wealth

Fundamental result

- But even public policies to correct market failure use markets to aggregate information
- Cap and trade
- Public procurement

Comparison of Auction Designs (Revenues)

Comparison of Designs

Question 1

- Which auction gives the highest expected price?
- FPSB (and Dutch): $\quad \mathrm{p}=1 / 2 \mathrm{HV}$
- English (and SPSB): $\quad \mathrm{p}=$ SHV Recall: $\mathrm{E}(\mathrm{SHV})=1 / 2 \mathrm{HV}$

Comparison of Designs

Answer 1

- Expected Revenue Equivalence Thm. (Vickrey, 1961)
- All four auctions give the same expected price

Comparison of Designs

Question 2

- Is there any other way to sell the goods which would give a higher expected profit?
- Lots of different possible ways
- Bargaining
- Other auction formats
- Strange games

Comparison of Designs

Answer 2

- Generalization of Revenue Equivalence Thm
- No!
- This is example of "mechanism design" and uses the "revelation principle" (Leonid Hurwicz, Eric Maskin, Roger Myerson)

