

School of Business, Economics and Law GÖTEBORG UNIVERSITY

Auctions

Johan Stennek

Auctions

- Examples
 - Antiques, fine arts
 - Houses, apartments, land
 - Government bonds, bankrupt assets
 - Government contracts (roads)
 - Radio frequencies

Auctions Why use auction?

- Seller's goal
 - Maximize revenues (you selling your apartment)
 - Efficient use (Government selling radio spectrum)
- Problem
 - Seller doesn't know what people are willing to pay
 - What is the highest valuation?
 - Who has it?
- Solution
 - Buyer *claiming* highest valuation gets the good
 - And will pay accordingly
- Auction = Mechanism to extract information

Auctions

But are auctions a good solution?

- Efficiency
 - IF: people really "tell the truth" = bid their valuations
 - THEN: good will be allocated correctly
- Revenues
 - IF: people really "tell the truth" = bid their valuations
 - THEN: price will be high (efficiency & extract WTP)
- Question: Do people "tell the truth"?
 - Need to study bidding behavior

Auctions

• Bidding behavior turns out to depend on:

- Exact rules of the auction (Auction design)
- How buyer's valuations are related (Type of uncertainty)

4 De. • Sealed bid we could price ("vickrey") · multaneous · vs second bid of · vs second of bid of bid of · vs second of bid of b

Auctions **Types of Uncertainty**

Private value

Different buyers have different values

- Common value

 - Common value Same value study private value Same value study buyers Buye different buyers have different information

• Assume

- One indivisible unit of the good
- Two bidders
- Information
 - Bidders get to know own valuations, v_1 and v_2
 - Then the bidding game starts
- Bidding rules: a simple model
 - Players take turns bidding
 - Whenever one player does not bid at least €1 more, the good is sold to the current bid

• Outcome

- Winner = Highest bidder
- Price = Highest bid

Second-Price Sealed-Bids

• Utility

$$u_i = \begin{cases} v_i - b_j & \text{if winning} \\ 0 & \text{otherwise} \end{cases}$$

- Define: "marginal increases strategy" for i
 - If current bid < valuation, raise by €1
 - If current bid > valuation, stop bidding
- Formally
 - IF: $b_{jt-1} + 1 \le v_i$, THEN: bid $b_{it} = b_{jt-1} + 1$
 - IF: $b_{jt-1} + 1 > v_i$, THEN: stop bidding
- Claim
 - This strategy is optimal (actually, dominant)

- Sketch of proof
 - $\text{ If } b_{2t-1} < v_1$
 - **Outbid**: Positive utility with (weakly) positive probability
 - Withdraw: u₁ = 0 for sure
 - No reason to raise by more than €1
 - $\text{ If } \textbf{b}_{2t-1} \geq \textbf{v}_1$
 - Withdraw: u₁ = 0 for sure
 - **Outbid**: Negative utility with (weakly) positive probability
 - Note dominance
 - Above strategy optimal
 - no matter how b_{2t-1} selected

- Outcome
 - Q: "Truth telling"?
 - Sort of...
 - people keep raising the price until the bid is equal to their valuation (or nobody else continues to bid)
 - Q: Who gets the good?

- Outcome
 - "Truth telling"
 - Efficiency
 - Bidder with highest valuation wins the good
 - <u>Q</u>: Who gets the surplus?

- Outcome
 - "Truth telling"
 - Efficiency
 - Bidder with highest valuation wins the good
 - Surplus-sharing
 - p = SHV (sometimes p = SHV + 1)

First-Price Sealed-Bids Auction

• Rules

– Simultaneous bids (= sealed bids)

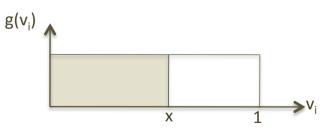
– Winner pays his bid (= first price)

- Trade-off
 - Higher bid \rightarrow Higher probability of winning
 - Higher bid \rightarrow Higher price

- Simplification
 - Two bidders: v_1, v_2
 - $-v_i$ uniformly distributed over [0, 1]

• <u>Q</u>: Probability that $v_i < x$?

• A: $Prob(v_i < x) = x$



- Payoff = expected utility
 - $E\pi_1(b_1) = (v_1 b_1) Pr(win) + 0 Pr(loose)$
 - $E\pi_1(b_1) = (v_1 b_1) Pr(b_1 > b_2)$

Depends on b₁ = own choice b₂ = random variable

- Payoff = expected utility
 - $E\pi_1(b_1) = (v_1 b_1) Pr(win) + 0 Pr(loose)$
 - $E\pi_1(b_1) = (v_1 b_1) Pr(b_1 > b_2)$

We need to compute probability that $b_2 < b_1$

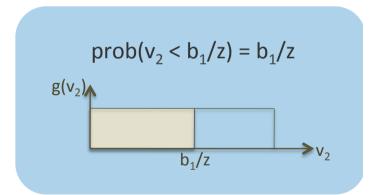
• Payoff = expected utility

$$- E\pi_1(b_1) = (v_1 - b_1) Pr(win) + 0 Pr(loose)$$

$$- E\pi_1(b_1) = (v_1 - b_1) Pr(b_1 > b_2)$$

Simplifying assumption: $b_2 = z \cdot v_2$

- Payoff = expected utility
 - $E\pi_1(b_1) = (v_1 b_1) Pr(win) + 0 Pr(loose)$
 - $E\pi_1(b_1) = (v_1 b_1) Pr(b_1 > b_2)$
 - $E\pi_1(b_1) = (v_1 b_1) Pr(b_1 > z \cdot v_2)$
 - $E\pi_1(b_1) = (v_1 b_1) Pr(v_2 < b_1/z)$
 - $E\pi_1(b_1) = (v_1 b_1) (b_1/z)$



Conclusion

- IF:
$$b_2 = z \cdot v_2$$

- THEN: $E\pi_1(b_1) = (v_1 b_1) (b_1/z)$
- Q: What is player 1's best reply?

- What is 1's best reply?
 - $E\pi_1(b_1) = (v_1 b_1) (b_1/z)$
 - FOC: (-1) $(b_1/z) + (v_1 b_1) (1/z) = 0$

Utility if winning * Increased probability of winning

Assume

 $-B_2(v_2) = z v_2$

• What is 1's best reply?

 $- E\pi_1(b_1) = (v_1 - b_1) (b_1/z)$

- FOC: (-1)
$$(b_1/z) + (v_1 - b_1) (1/z) = 0$$

Decreased utility * probability of winning

- Assume
 - $-B_2(v_2) = z v_2$
- What is 1's best reply?
 - $E\pi_1(b_1) = (v_1 b_1) (b_1/z)$
 - FOC: $(b_1/z) + (v_1 b_1)/z = 0$
 - Solve: $b_1 = \frac{1}{2} \cdot v_1$

- Conclusion
 - IF: Bidder 2 uses a linear strategy: $B_2(v_2) = z \cdot v_2$

– THEN: Best reply for bidder 1:

 $\mathsf{B}_1(\mathsf{v}_1) = \frac{1}{2} \cdot \mathsf{v}_1$

- Note
 - Since $\frac{1}{2} \cdot v_1$ is linear
 - Since players are symmetric
 - Both bidding $b_i = \frac{1}{2} \cdot v_i$ is a Nash equilibrium of a game where the strategy for each player is to choose some function $B_i(v_i)$.

- Interpretation
 - Why bid $\frac{1}{2}$ v ?
- Answer 1
 - Optimal balance between
 - probability of winning
 - price in case of winning

v₁/2

- Interpretation

 But why exactly ½ ?
- Answer 2
 - Assume you have highest valuation
 - <u>Q</u>: What is the expected second highest valuation?
 - Winner bids expected wtp of competitor=> competitor no incentive to bid more

→_{V2}

1

 V_1

Remark

- With more bidders, expected second highest wtp is closer to highest wtp
- Bid larger share of wtp

 $-As n \rightarrow \infty b \rightarrow wtp$

- Outcome
 - Q: Who gets the good?

- Outcome
 - Efficiency
 - Bidder with highest valuation wins the good
 - Q: Who gets the surplus?

- Outcome
 - Efficiency
 - Bidder with highest valuation wins the good
 - Surplus-sharing
 - p = ½ HV
 - Truth-telling?

First-Price Sealed-Bids

• Outcome

– Efficiency

- Bidder with highest valuation wins the good
- Surplus-sharing
 - p = ½ HV
- "Sort of truth-telling"
 - Players actually reveal their valuation

Game Theoretic "Details"

Auction = Game of Incomplete Information

- Game with incomplete information
 - Buyers don't know each others' valuations
 - Ada is not able to predict Ben's bid exactly
 - It depends on Ben's valuation of the object
 - How should Ada and Ben analyze the situation?

- Solution I: Change definition of strategy
 - Strategy = Function prescribing bid for every possible valuation a player may have
- Example of strategy
 - IF wtp = v_H THEN bid = b_H
 - IF wtp = v_L THEN bid = b_L
- Then, players able to
 - Predict rival's <u>strategy</u>, even if uncertainty about type and <u>bid</u> remains
 - Maximize expected payoff

- But why are strategies functions?
 - Ada knows she has high valuation, v_{H}
 - Why should she choose strategy with instruction for v_L ?
- Answer
 - Ben doesn't know Ada's valuation. Could be v_H or v_L
 - Ben must consider
 - What would Ada bid if v_H
 - What would Ada bid if \boldsymbol{v}_{L}
 - To predict Ben's bid, Ada must also consider what she herself would have bid in case of $v_{\rm L}$

- Think of Ada's choice as two-step procedure
 - 1. Find optimal bid for all possible valuations: $b^{Ada}(v_H)$ and $b^{Ada}(v_L)$
 - 2. Select the relevant bid: $b^{Ada}(v_H)$

- Solution II: Change definition of payoff
 - Payoff = expected utility

Bayesian Nash Equilibrium

- Pair of strategies (b^{Ada}, b^{Ben}) such that
- b^{Ada} is a best reply to b^{Ben}
 - $-b^{Ada}(v_{H})$ maximizes Ada's expected utility
 - If Ada's valuation is v_H
 - Assuming Ben uses b^{Ben}
 - b^{Ada}(v_L) maximizes Ada's expected utility
 - If Ada's valuation is v_L
 - Assuming Ben uses b^{Ben}
- b^{Ben} is a best reply to b^{Adam}

Most fundamental result of auction theory

Note 1: No individual knows who has the highest valuation

Note 2: But if people play the auction game ⇒ person with highest valuation walks away with the good

No individual (even a dictator) could have implemented the efficient allocation, since nobody has sufficient information

But the market mechanism actually solves the maximization problem

May say the market aggregates information

- * must use all the information to solve the max-problem
- * despite the fact that it is scattered

- Laboratory experiments
 - It works! (Vernon Smith)
 - Also double auctions
 - Even with "few" buyers and "few" sellers market quickly converges to competitive price
 - NB: must use laboratory to know people's valuations

Sure, it is not perfect...

...there is also market failure...

- Coordination (mis-pricing; recessions)
- Double coincidence of wants (kidneys, apartments)
- Externalities (global warming; telecom)
- Public goods (R&D; legal system to enforce all contracts)
- Market power (medicines; district heating)
- Incomplete information (cars, insurance, labor, credit)

...and an uneven distribution of wealth

- But even public policies to correct market failure use markets to aggregate information
 - Cap and trade
 - Public procurement

Comparison of Auction Designs (Revenues)

Comparison of Designs Question 1

- Which auction gives the highest expected price?
 - FPSB (and Dutch): $p = \frac{1}{2} HV$
 - English (and SPSB): p = SHV Recall: E(SHV) = ½ HV

Comparison of Designs Answer 1

- Expected Revenue Equivalence Thm. (Vickrey, 1961)
 - All four auctions give the same *expected* price

Comparison of Designs Question 2

- Is there any other way to sell the goods which would give a higher expected profit?
 - Lots of different possible ways
 - Bargaining
 - Other auction formats
 - Strange games

Comparison of Designs Answer 2

- Generalization of Revenue Equivalence Thm
 - No!
 - This is example of "mechanism design" and uses the "revelation principle" (Leonid Hurwicz, Eric Maskin, Roger Myerson)